Geophysical observations have shown that transient slow slip events, with average slip speeds v on the order of 10−8 to 10−7 m/s, occur in some subduction zones. These slip events occur on the same faults but at greater depth than large earthquakes (with slip speeds of order ∼ 1 m/s). We explore the hypothesis that whether slip is slow or fast depends on the competition between dilatancy, which decreases fault zone pore pressure p, and thermal pressurization, which increases p. Shear resistance to slip is assumed to follow an effective stress law τ=f(σ-p)fσ¯. We present two-dimensional quasi-dynamic simulations that include rate-state friction, dilatancy, and heat and pore fluid flow normal to the fault. We find that at lower background effective normal stress (σ¯), slow slip events occur spontaneously, whereas at higher σ¯, slip is inertially limited. At intermediate σ¯, dynamic events are followed by quiescent periods, and then long durations of repeating slow slip events. In these cases, accelerating slow events ultimately nucleate dynamic rupture. Zero-width shear zone approximations are adequate for slow slip events but substantially overestimate the pore pressure and temperature changes during fast slip when dilatancy is included.

References

References
1.
Schwartz
,
S.
, and
Rokosky
,
J.
, 2007, “
Slow Slip Events and Seismic Tremor at Circum-Pacific Subduction Zones
,”
Rev. Geophys.
,
45
,
RG3004
.
2.
Peng
,
Z.
, and
Gomberg
,
J.
, 2010, “
An Integrated Perspective of the Continuum Between Earthquakes and Slow-Slip Phenomena
,”
Nature GeoSci.
,
3
, pp.
399
607
.
3.
Beroza
,
G. C.
, and
Ide
,
S.
, 2011, “
Slow Earthquakes and Nonvolcanic Tremor
,”
Annu. Rev. Earth Planet. Sci.
,
39
, pp.
271
296
.
4.
Segall
,
P.
,
Rubin
,
A.
,
Bradley
,
A. M.
, and
Rice
,
J.
, 2010, “
Dilatant Strengthening as a Mechanism for Slow Slip Events
,”
J. Geophys. Res.
,
115
,
B12305
.
5.
Suzuki
,
T.
, and
Yamashita
,
T.
, 2009, “
Dynamic Modeling of Slow Earthquakes Based on Thermoporoelastic Effects and Inelastic Generation of Pores
,”
J. Geophys. Res.
,
114
,
B00A04
.
6.
Liu
,
Y. J.
, and
Rubin
,
A.
, 2010, “
Role of Fault Gouge Dilatancy on Aseismic Deformation Transients
,”
J. Geophys. Res.
,
115
,
B10414
.
7.
Yamashita
,
T.
, and
Suzuki
,
T.
, 2011, “
Dynamic Modeling of Slow Slip Coupled With Tremor
,”
J. Geophys. Res.
,
116
,
B05301
.
8.
Segall
,
P.
, and
Rice
,
J. R.
, 2006, “
Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation?
,”
J. Geophys. Res.
,
111
,
B09316
.
9.
Schmitt
,
S. V.
,
Segall
,
P.
, and
Matsuzawa
,
T.
, 2011, “
Shear Heating Induced Thermal Pressurization During Earthquake Nucleation
,”
J. Geophys. Res.
,
116
,
B06308
.
10.
Rice
,
J.
, 1975, “
Stability of Dilatant Hardening for Saturated Rock Masses
,”
J. Geophys. Res.
,
80
(
11
), pp.
1531
1536
.
11.
Rice
,
J.
, and
Ruina
,
A.
, 1983, “
Stability of Steady Frictional Slipping
,”
Trans. ASME, J. Appl. Mech.
,
50
(
2
), pp.
343
349
.
12.
Rice
,
J. R.
, 2006, “
Heating and Weakening of Faults During Earthquake Slip
,”
J. Geophys. Res.
,
111
,
B05311
.
13.
Rice
,
J.
, 1993, “
Spatio-Temporal Complexity of Slip on a Fault
,”
J. Geophys. Res.
,
98
, pp.
9885
9907
.
14.
Lapusta
,
N.
, and
Liu
,
Y.
, 2009, “
Three-Dimensional Boundary Integral Modeling of Spontaneous Earthquake Sequences and Aseismic Slip
,”
J. Geophys. Res.
,
114
,
B09303
.
15.
Lachenbruch
,
A. H.
, 1980, “
Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion
,”
J. Geophys. Res.
,
85
, pp.
6097
6112
.
16.
Andrews
,
D. J.
, 2002, “
A Fault Constitutive Relation Accounting for Thermal Pressurization of Pore Fluid
,”
J. Geophys. Res.
,
107
(
B12
), pp.
2363
2370
.
17.
Bizzarri
,
A.
, and
Cocco
,
M.
, 2006, “
A Thermal Pressurization Model for the Spontaneous Dynamic Rupture Propagation on a Three-Dimensional Fault: 1. Methodological Approach
,”
J. Geophys. Res.
,
111
,
B05303
.
18.
Rice
,
J. R.
,
Lapusta
,
N.
, and
Ranjith
,
K.
, 2001, “
Rate and State Dependent Friction and the Stability of Sliding Between Elastically Deformable Solids
,”
J. Mech. Phys. Solids
,
49
, pp.
1865
1898
.
19.
Bizzarri
,
A.
, 2011, “
Temperature Variations of Constitutive Parameters can Significantly Affect the Fault Dynamics
,”
Earth Planet. Sci. Lett.
,
306
, pp.
272
278
.
20.
Marone
,
C.
, 1998, “
Laboratory-Derived Friction Laws and Their Application to Seismic Faulting
,”
Ann. Rev. Earth Planet. Sci.
,
26
, pp.
643
696
.
21.
Dieterich
,
J. H.
, and
Kilgore
,
B. D.
, 1994, “
Direct Observation of Frictional Contacts: New Insights for State-Dependent Properties
,”
Pure. Appl. Geophys.
,
143
, pp.
283
302
.
22.
Beeler
,
N.
,
Tullis
,
T. E.
, and
Weeks
,
J.
, 1994, “
The Roles of Time and Displacement in the Evolution Effect in Rock Friction
,”
Geophys. Res. Lett.
,
21
, pp.
1987
1990
.
23.
Ruina
,
A.
, 1983, “
Slip Instability and State Variable Friction Laws
,”
J. Geophys. Res.
,
88
(
B12
), pp.
10359
10370
.
24.
Bayart
,
E.
,
Rubin
,
A. M.
, and
Marone
,
C.
, 2006, “
Evolution of Fault Friction Following Large Velocity Jumps
,”
EOS Trans. Am. Geophys. Union (Fall Meet. Suppl., Abstract)
,
87
(
52
), pp.
S31A
0180
.
25.
Ampuero
,
J.-P.
, and
Rubin
,
A. M.
, 2008, “
Earthquake Nucleation on Rate and State Faults—Aging and Slip Laws
,”
J. Geophys. Res.
,
113
,
B01302
.
26.
Linker
,
M. F.
, and
Dieterich
,
J. H.
, 1992, “
Effects of Variable Normal Stress on Rock Friction: Observations and Constitutive Equations
,”
J. Geophys. Res.
,
97
(
B4
), pp.
4923
4940
.
27.
Prakash
,
V.
, 1998, “
Frictional Response of Sliding Interfaces Subjected to Time Varying Normal Pressures
,”
J. Tribol.
,
120
, pp.
97
102
.
28.
Segall
,
P.
, and
Rice
,
J. R.
, 1995, “
Dilatancy, Compaction, and Slip Instability of a Fluid-Infiltrated Fault
,”
J. Geophys. Res.
,
100
(
B11
), pp.
22155
22171
.
29.
Marone
,
C.
,
Raleigh
,
C.
, and
Scholz
,
C.
, 1990, “
Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge
,”
J. Geophys. Res.
,
95
, pp.
7007
7025
.
30.
Samuelson
,
J.
,
Elsworth
,
D.
, and
Marone
,
C.
, 2009, “
Shear-Induced Dilatancy of Fluid-Saturated Faults: Experiment and Theory
,”
J. Geophys. Res.
,
114
,
B12404
.
31.
Mitsui
,
Y.
, and
Cocco
,
M.
, 2010, “
The Role of Porosity Evolution in Frictional Instabilities: A Parametric Study Using a Spring-Slider Dynamic System
,”
Geophys. Res. Lett.
,
37
,
L23305
.
32.
Marone
,
C.
, and
Kilgore
,
B.
, 1993, “
Scaling of the Critical Slip Distance for Seismic Faulting With Shear Strain in Fault Zones
,”
Nature
,
362
, pp.
618
621
.
33.
Marone
,
C.
, April 2011, private communication.
34.
Noda
,
H.
,
Dunham
,
E. M.
, and
Rice
,
J. R.
, 2009, “
Earthquake Ruptures With Thermal Weakening and the Operation of Major Faults at Low Overall Stress Levels
,”
J. Geophys. Res.
,
114
,
B07302
.
35.
Bogacki
,
P.
, and
Shampine
,
L.
, 1989, “
A 3(2) Pair of Runge-Kutta Formulas
,”
Appl. Math. Lett.
,
2
(
4
), pp.
321
325
.
You do not currently have access to this content.