An anisotropic elastoplastic bounding surface model with non-associative flow rule is developed for simulating the mechanical behavior of different types of clays. The non-associative flow rule allows for the simulation of not only strain-hardening but also strain-softening response. The theoretical framework of the model is given, followed by the verification of the model as applied to the experimental results of a strain-hardening Kaolin tested under different undrained stress paths. The undrained behavior of Boston Blue clay, which exhibits a strain-softening behavior, is also simulated. It is shown that the non-associative nature of the model gives more accurate results than those of the same model employing an associative flow rule, especially for normally consolidated Kaolin specimens. The results show that the model is also capable of simulating the strain-softening behavior of Boston blue clay with reasonable accuracy.

References

References
1.
Schofield
,
A. N.
, and
Wroth
,
C. P.
, 1968,
Critical State Soil Mechanics
,
McGraw-Hill
,
London
.
2.
Roscoe
,
K. H.
, and
Burland
,
J. B.
, 1968, “
On the Generalized Stress-Strain Behavior of Wet Clay
,”
Engineering Plasticity
,
J.
Heyman
and
F. A.
Leckie
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
535
609
.
3.
Ling
,
H. I.
,
Yue
,
D.
,
Kaliakin
,
V. N.
, and
Themelis
,
N. J.
, 2002, “
Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils
,”
J. Eng. Mech.
,
128
(
7
), pp.
748
758
.
4.
Dafalias
,
Y. F.
, 1986, “
Bounding Surface Plasticity. I: Mathematical Foundation and Hypoplasticity
,”
J. Eng. Mech.
,
112
(
9
), pp.
966
987
.
5.
Dafalias
,
Y. F.
, and
Herrmann
,
L. R.
, 1982, “
Bounding Surface Formulation of Soil Plasticity
,”
Soil Mechanics–Transient and Cyclic Loads
,
G. N.
Pande
and
D. C.
Zienkiewicz
, eds.,
Wiley
,
New York
, pp.
253
282
.
6.
Dafalias
,
Y. F.
, and
Herrmann
,
L. R.
, 1986, “
Bounding Surface Plasticity. II: Application to Isotropic Cohesive Soils
,”
J. Eng. Mech.
,
112
(
9
), pp.
1263
1291
.
7.
Anandarajah
,
A.
, and
Dafalias
,
Y. F.
, 1986, “
Bounding Surface Plasticity. III: Application to Anisotropic Cohesive Soils
,”
J. Eng. Mech.
,
112
(
12
), pp.
1292
1318
.
8.
Liang
,
R. Y.
, and
Ma
,
F.
, 1992, “
Anistoropic Plasticity Model for Undrained Cyclic Behavior of Clays. I: Theory
,”
J. Geotech. Engrg.
,
118
(
2
), pp.
229
245
.
9.
Whittle
,
A. J.
, 1993, “
Evaluation of a Constitutive Model for Overconsolidated Clays
,”
Geotechnique
,
43
(
2
), pp.
289
313
.
10.
Whittle
,
A. J.
, and
Kavvadas
,
M. J.
, 1994, “
Formulation of MIT-E3 Constitutive Model for Overconsolidated Clays
,”
J. Geotech. Engrg.
,
120
(
1
), pp.
173
198
.
11.
Drucker
,
D. C.
, 1951, “
A More Fundamental Approach to Plastic Stress-Strain Relation
,”
Proceedings 1st National Congress of Applied Mechanics
, ASME, Chicago, pp.
487
491
.
12.
Dafalias
,
Y. F.
,
Manzari
,
M. T.
, and
Papadimitriou
,
A. G.
, 2006, “
SANICLAY: Simple Anisotropic Clay Plasticity Model
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
30
(
12
), pp.
1231
1257
.
13.
Jiang
,
J.
, and
Ling
,
H. I.
, 2010, “
A Framework of an Anisotropic Elastoplastic Model for Clays
,”
Mech. Res. Commun.
,
37
(
4
), pp.
394
398
.
14.
Dafalias
,
Y. F.
, 1986, “
An Anisotropic Critical State Soil Plasticity Model
,”
Mech. Res. Commun.
,
13
, pp.
341
347
.
15.
Stipho
,
A. S.
, 1978, “
Experimental and Theoretical Investigation of the Behavior of Anisotropically Consolidated Kaolin
,” Ph.D. thesis, University College, Cardiff, UK.
16.
Ladd
,
C. C.
, and
Varallyay
,
J.
, 1965, “
The Influence of the Stress System on the Behavior of Saturated Clays During Undrained Shear
,” Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, Research Report No. R65-11.
17.
Fayad
,
P.
, 1986, “
Aspects of the Volumetric and Undrained Behavior of Boston Blue Clay
,” M.S. thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge.
18.
Ladd
,
C. C.
,
Bovee
,
R.
,
Edgers
,
L.
, and
Rixner
,
J. J.
, 1971, “
Consolidated-Undrained Plane Strain Tests on Boston Blue Clay
,” Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, Research Report No. R71-13.
19.
Chen
,
W. F.
, and
Han
,
D. J.
, 2007, “
Flow Rule and Drucker’s Stability Postulate
,”
Plasticity for Structural Engineers, J. Ross Publishing
, Fort Lauderdale, FL.
20.
Mroz
,
Z.
, 1963, “
Non-Associated Flow Laws in Plasticity
,”
J. Mécanique
,
2
(
1
), pp.
21
42
.
21.
Kaliakin
,
V. N.
, 1992, “
CALBR8, A Simple Computer Program for Assessing the Idiosyncrasies of Various Constitutive Models Used to Characterize Soils
,” University of Delaware, Newark, DE, Civil Engineering Report No. 92-1.
22.
Herrmann
,
L. R.
,
Kaliakin
,
V. N.
,
Shen
,
C. K.
,
Mish
,
K. D.
, and
Zhu
,
Z -Y.
, 1987, “
Numerical Implementation of a Plasticity Model for Cohesive Soils
,”
J. Eng. Mech.
,
113
(
4
), pp.
500
519
.
23.
Manzari
,
M. T.
, and
Nour
,
M. A.
, 1997, “
On Implicit Integration of Bounding Surface Plasticity Models
,”
Comput. Struct.
,
63
(
3
), pp.
385
395
.
24.
Borja
,
R. I.
,
Lin
,
C. H.
, and
Montans
,
F. J.
, 2001, “
Cam-Clay Plasticity, Part IV: Implicit Integration of Anisotropic Bounding Surface Model With Nonlinear Hyperelasticity and Ellipsoidal Loading Function
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3293
3323
.
25.
Kavvadas
,
M. J.
, 1982, “
Non-Linear Consolidation Around Driven Piles in Clays
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
26.
Pestana
,
J. M.
,
Whittle
,
A. J.
, and
Gens
,
A.
S., 2002, “
Evaluation of a Constitutive Model for Clays and Sands: Part II - Clay Behaviour
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
26
(
11
), pp.
1123
1146
.
27.
Papadimitriou
,
A. G.
,
Dafalias
,
Y. F.
, and
Manzari
,
M. T.
, 2007, “
SANICLAY: A New Simple Anisotropic Clay Plasticity Model
,”
Proceedings of the 10th International Symposium on Numerical Models in Geomechanics NUMOG 10- Numerical Models in Geomechanics NUMOG
,
10
, pp.
79
84
.
28.
Banerjee
,
P. K.
, and
Yousif
,
N. B.
, 1986, “
A Plasticity Model for the Mechanical Behavior of Anisotropically Consolidated Clay
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
10
, pp.
521
541
.
29.
Rice
,
J. R.
, 1973, “
The Initiation and Growth of Shear Bands
,”
Plasticity and Soil Mechanics
,
A. C.
Palmer
, ed.,
Cambridge University Engineering Department
,
Cambridge
, pp.
263
274
.
30.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
, 1975, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
, pp.
371
394
.
31.
Borja
,
R. I.
, 2002, “
Bifurcation of Elastoplastic Solids to Shear Band Mode at Finite Strain
,”
Comput. Methods Appl.Mech. Eng.
,
191
, pp.
5287
5314
.
32.
Banerjee
,
P. K.
,
Stipho
,
A. S.
, and
Yousif
,
N. B.
, 1985, “
A Theoretical and Experimental Investigation of the Behaviour of Anisotropically Consolidated Clay
,”
Developments in Soil Mechanics and Foundation Engineering
, Vol.
2
,
Applied Science
,
London
, pp.
1
41
.
33.
Atkinson
,
J.
, 1993,
An Introduction to the Mechanics of Soils and Foundations Through Critical State Soil Mechanics
,
McGraw-Hill
,
London
.
34.
Banerjee
,
P. K.
, and
Stipho
,
A. S.
, 1978, “
Associated and Non-Associated Constitutive Relations for Undrained Behaviour of Isotropic Soft Clays
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
2
(
1
), pp.
35
52
.
You do not currently have access to this content.