The paper reviews a recently developed finite chain model for the weakest-link statistics of strength, lifetime, and size effect of quasi-brittle structures, which are the structures in which the fracture process zone size is not negligible compared to the cross section size. The theory is based on the recognition that the failure probability is simple and clear only on the nanoscale since the probability and frequency of interatomic bond failures must be equal. The paper outlines how a small set of relatively plausible hypotheses about the failure probability tail at nanoscale and its transition from nano- to macroscale makes it possible to derive the distribution of structural strength, the static crack growth rate, and the lifetime distribution, including the size and geometry effects [while an extension to fatigue crack growth rate and lifetime, published elsewhere (Le and Bažant, 2011, “Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling,” J. Mech. Phys. Solids, 1322–1337), is left aside]. A salient practical aspect of the theory is that for quasi-brittle structures the chain model underlying the weakest-link statistics must be considered to have a finite number of links, which implies a major deviation from the Weibull distribution. Several new extensions of the theory are presented: (1) A derivation of the dependence of static crack growth rate on the structure size and geometry, (2) an approximate closed-form solution of the structural strength distribution, and (3) an effective method to determine the cumulative distribution functions (cdf’s) of structural strength and lifetime based on the mean size effect curve. Finally, as an example, a probabilistic reassessment of the 1959 Malpasset Dam failure is demonstrated.

References

References
1.
Bazˇant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
.
2.
Bazˇant
,
Z. P.
, and
Kazemi
,
M. T.
, 1990, “
Determination of Fracture Energy, Process Zone Length and Brittleness Number From Size Effect, With Application to Rock and Concrete
,”
Int. J. Fracture
,
44
, pp.
111
131
.
3.
Bazˇant
,
Z. P.
, and
Kazemi
,
M. T.
, 1990, “
Size Effect in Fracture of Ceramics and Its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
1841
1853
.
4.
Bazˇant
,
Z. P.
, 2004, “
Scaling Theory of Quaisbrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
37
), pp.
13400
13407
.
5.
Bazˇant
,
Z. P.
, 2005,
Scaling of Structural Strength
,
2nd ed.
,
Elsevier
,
London
.
6.
Bazˇant
,
Z. P.
, and
Pang
,
S.-D.
, 2006, “
Mechanics Based Statistics of Failure Risk of Quasibrittle Structures and Size Effect on Safety Factors
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
25
), pp.
9434
9439
.
7.
Bazˇant
,
Z. P.
, and
Pang
,
S.-D.
, 2007, “
Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
55
, pp.
91
134
.
8.
Bazˇant
,
Z. P.
,
Le
,
J.-L.
, and
Bazant
,
M. Z.
, 2009, “
Scaling of Strength and Lifetime Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(28)
, pp.
11484
11489
.
9.
Le
,
J.-L.
,
Bazˇant
,
Z. P.
, and
Bazant
,
M. Z.
, 2011, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Static Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
, pp.
1291
1321
.
10.
Bazˇant
,
Z. P.
, and
Novák
,
D.
, 2001, “
Nonlocal Model for Size Effect in Quasibrittle Failure Based on Extreme Value Statistics
,”
Proceedings of the 8th International Conference on Structural Safety and Reliability (ICOSSAR)
,
R. B.
Corotis
, ed.,
Swets & Zeitinger
,
Balkema
, pp.
1
8
.
11.
Hillig
,
W. B.
, and
Charles
,
R. J.
, 1964, “
Surfaces, Stress-Dependent Surface Reaction, and Strength
,”
Proceedings of the 2nd Berkeley International Materials Conference
,
V. F.
Zackay
, ed.,
J. Wiley
,
New Yotk
.
12.
Wiederhorn
,
S. M.
, and
Bolz
,
L. H.
, 1970, “
Stress Corrosion and Static Fatigue of Glass
,”
J. Am. Ceram. Soc.
,
53
(
10
), pp.
543
548
.
13.
Evans
,
A. G.
, 1972, “
A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials—and Its Application to Polycrystalline Alumina
,”
J. Mater. Sci.
,
7
, pp.
1137
1146
.
14.
Evans
,
A. G.,
and
Fu
,
Y.
, 1984, “
The Mechanical Behavior of Alumina
,” in
Fracture in Ceramic Materials
,
Noyes Publications
,
Park Ridge, NJ
, pp.
56
88
.
15.
Thouless
,
M. D.
,
Hsueh
,
C. H.
, and
Evans
,
A. G.
, 1983, “
A Damage Model of Creep Crack Growth in Polycrystals
,”
Acta Metall.
,
31
(
10
), pp.
1675
1687
.
16.
Fett
,
T.
, 1991, “
A Fracture-Mechanical Theory of Subcritical Crack Growth in Ceramics
,”
Int. J. Frac.
,
54
, pp.
117
130
.
17.
Le
,
J.-L.
,
Bazˇant
,
Z. P.
, and
Bazant
,
M. Z.
, 2009, “
Subcritical Crack Growth Law and Its Consequences for Lifetime Statistics and Size Effect of Quasibrittle Structures
,”
J. Phys. D.
,
42
, p.
214008
.
18.
Bazˇant
,
Z. P.
, and
Le
,
J.-L.
, 2009, “
Nano-Mechanics Based Modeling of Lifetime Distribution of Quasibrittle Structures
,”
J. Eng. Failure Anal.
,
16
, pp.
2521
2529
.
19.
Le
,
J.-L.
, and
Bazˇant
,
Z. P.
, 2011, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
, pp.
1322
1337
.
20.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1998, “
Spanning the Continuum to Quantum Length Scales in a Dynamical Simulation of Brittle Fracture
,”
Europhys. Lett.
,
44
(
6
), pp.
783
787
.
21.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
, pp.
2391
2403
.
22.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity, and Diffusion As Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
, pp.
283
291
.
23.
Glasstone
,
S.
,
Laidler
,
K. J.
, and
Eyring
,
H.
, 1941,
The Theory of Rate Processes
,
McGraw-Hill
,
New York
.
24.
Kramers
H. A.
, 1941, “
Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reaction
,”
Physica
,
7
, pp.
284
304
.
25.
Tobolsky
,
A.
, and
Eyring
,
H.
, 1943, “
Mechanical Properties of Polymeric Materials
,”
J. Chem. Phys.
,
11
, pp.
125
134
.
26.
Krausz
,
A. S.
, and
Krausz
,
K.
, 1988,
Fracture Kinetics of Crack Growth
,
Kluwer Academic
,
Netherlands
.
27.
Kaxiras
,
E.
, 2003,
Atomic and Electronic Structure of Solids
,
Cambridge University Press
,
Cambridge
.
28.
Risken
,
H.
, 1989,
The Fokker-Plank Equation
,
2nd ed.
,
Springer
,
Berlin
.
29.
Philips
,
R.
, 2001,
Crystals, Defects and Microstructures: Modeling Across Scales
,
Cambridge University Press
,
Cambridge
.
30.
Redner
,
S.
, 2001,
A Guide to First-Passage Processes
,
Cambridge University Press
,
Cambridge
.
31.
Daniels
,
H. E.
, 1945, “
The Statistical Theory of the Strength of Bundles and Threads
,”
Proc. R. Soc. London Ser. A
,
183
, p.
405
435
.
32.
Coleman
,
B. D.
, 1958, “
Statistics and Time Dependent of Mechanical Breakdown in Fibers
,”
J. Appl. Phys.
,
29
(
6
), pp.
968
983
.
33.
Harlow
,
D. G.
, and
Phoenix
,
S. L.
, 1978, “
The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials I: Analysis and Conjectures
,”
J. Comp. Mater.
,
12
, pp.
195
214
.
34.
Phoenix
,
S. L.
, 1978, “
Stochastic Strength and Fatigue of Fiber Bundles
,”
Int. J. Frac.
,
14
(
3
), pp.
327
344
.
35.
Harlow
,
D. G.
,
Smith
,
R. L.
, and
Taylor
,
H. M.
, 1983, “
Lower Tail Analysis of the Distribution of the Strength of Load-Sharing Systems
,”
J. Appl. Prob.
,
20
, pp.
358
367
.
36.
Phoenix
,
S. L.
,
Ibnabdeljalil
,
M.
, and
Hui
,
C.-Y.
, 1997, “
Size Effects in the Distribution for Strength of Brittle Matrix Fibrous Composites
,”
Int. J. Solids Struct.
,
34
(
5
), pp.
545
568
.
37.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
, 1928, “
Limiting Forms of the Frequency Distribution of the Largest and Smallest Member of a Sample
,”
Proc. Cambridge Philos. Soc.
,
24
, pp.
180
190
.
38.
Gumbel
,
E. J.
, 1958,
Statistics of Extremes
,
Columbia University Press
,
New York
.
39.
Ang
,
A. H. -S. H.-S.
, and
Tang
,
W. H.
, 1984,.
Probability Concepts in Engineering Planning and Design. Vol II. Decision, Risk and Reliability
,
Wiley
,
New York
.
40.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
41.
Bazˇant
,
Z. P.
,
Le
,
J.-L.
, and
Hoover
,
C. G.
, 2010, “
Nonlocal Boundary Layer (NBL) Model: Overcoming Boundary Condition Problems in Strength Statistics and Fracture Analysis of Quasibrittle Materials
,”
Fracture Mechanics of Concrete and Concrete Structures—Recent Advances in Fracture Mechanics of Concrete
,
B.-H.
Oh
, Ed.,
Korea Concrete Institute
,
Seoul
, pp.
135
143
.
42.
Munz
,
D.
, and
Fett
,
T.
, 1999,
Ceramics: Mechanical Properties, Failure Behavior, Materials Selection
,
Springer
,
Berlin
.
43.
Lohbauer
,
U.
,
Petchelt
,
A.
, and
Greil
,
P.
, 2002, “
Lifetime Prediction of CAD/CAM Dental Ceramics
,”
J. Biomed. Mater. Res.
,
63
(
6
), pp.
780
785
.
44.
Barenblatt
,
G. I.
, 1959, “
The Formation of Equilibrium Cracks During Brittle Fracture, General Ideas and Hypothesis, Axially Symmetric Cracks
,”
Prikl. Mater. Mech.
,
23
(
3
), pp.
434
444
.
45.
Bazˇant
,
Z. P.
, and
Xu
,
K.
, 1991, “
Size Effect in Fatigue Fracture of Concrete
,”
ACI Mater. J.
,
88
(
4
), pp.
390
399
.
46.
Bazˇant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC
,
Boca Raton, FL
.
47.
Yu
,
Q.
,
Le
,
J.-L.
,
Hoover
,
C. G.
, and
Bazˇant
,
Z. P.
, 2010, “
Problems With Hu-Duan Boundary Effect Model and Its Comparison to Size-Shape Effect Law for Quasibrittle Fracture
,”
J. Eng. Mech.
,
136
(
1
), pp.
40
50
.
48.
Barenblatt
,
R. I.
, and
Botvina
,
L. R.
, 1981, “
Incomplete Self-Similarity of Fatigue in the Linear Range of Crack Growth
,”
Fatigue Eng. Mater. Struct.
,
3
, pp.
193
212
.
49.
Ritchie
,
R. O.
, 2005, “
Incomplete Self-Similarity and Fatigue-Crack Growth
,”
Int. J. Frac.
,
132
, pp.
197
203
.
50.
Barenblatt
,
G. I.
, 2003,
Scaling
,
Cambridge University Press
,
Cambridge
.
51.
Weibull
,
W.
, 1939, “
The Phenomenon of Rupture in Solids
,”
Proc. R. Swedish Inst. Eng.Res.
,
153
, pp.
1
55
.
52.
Chiao
,
C. C.
,
Sherry
,
R. J.
, and
Hetherington
,
N. W.
, 1977, “
Experimental Verification of an Accelerated Test for Predicting the Lifetime of Organic Fiber Composites
,”
J. Comp. Mater.
,
11
, pp.
79
91
.
53.
Stanley
,
P.
, and
Inanc
,
E. Y.
, 1985, “
Assessment of Surface Strength and Bulk Strength of a Typical Brittle Material
,” in
Probabilistic Methods. I. The Mechanics of Solids and Structures
,
S.
Eggwertz
and
N. C.
Lind
, eds.,
Springer
,
Berlin
, pp.
231
251
.
54.
Fett
,
T.
, and
Munz
,
D.
, 1991, “
Static and Cyclic Fatigue of Ceramic Materials
,” in
Ceramics Today—Tomorrow’s Ceramics
,
P.
Vincenzini
, Ed.,
Elsevier Science
,
New York
, pp.
1827
1835
.
55.
Gross
,
B.
, 1996, “
Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens With Volume or Surface Flaw Failure
,”
NASA TM-
,
4721
, pp.
1
21
.
56.
Salem
,
J. A.
,
Nemeth
,
N. N.
,
Powers
,
L. P.
, and
Choi
,
S. R.
, 1996, “
Reliability Analysis of Uniaxially Ground Brittle Materials
,”
ASME J. Eng. Gas Turbines Power
,
118
, pp.
863
871
.
57.
Tinschert
,
J.
,
Zwez
,
D.
,
Marx
,
R.
, and
Ausavice
,
K. J.
, 2000, “
Structural Reliability of Alumina-, Feldspar-, Leucite-, Mica- and Zirconia-Based Ceramics
,”
J. Dent.
,
28
, pp.
529
535
.
58.
Santos
,
C. d.
,
Strecker
,
K.
,
Piorino Neto
,
F.
,
Silva
,
O. M. M
,
Baldacum
,
S. A.
, and
da Filva
,
C. R. M.
, 2003, “
Evaluation of the Reliability of Si3N4- Al2O3-CTR2O3 Ceramics Through Weibull Analysis
,”
Mater. Res.
,
6
(
4
), pp.
463
467
.
59.
Le
,
J.-L.
, and
Bazˇant
,
Z. P.
, 2009, “
Finite Weakest Link Model With Zero Threshold for Strength Distribution of Dental Restorative Ceramics
,”
Dent. Mater.
,
25
(
5
), pp.
641
648
.
60.
Pang
,
S.-D.
,
Bazˇant
,
Z. P.
, and
Le
,
J.-L.
, 2008, “
Statistics of Strength of Ceramics: Finite Weakest Link Model and Necessity of Zero Threshold
,”
Int. J. Frac., Special Issue on Physical Aspects of Scaling
,
154
, pp.
131
145
.
61.
Bartle
,
A.
, Ed., 1985, “
Four Major Dam Failures Re-Examined
,”
Int. Water Power Dam Constr.
,
37
(
11
), pp.
33
36
, 41–46.
62.
Levy
,
M.
, and
Salvadori
,
M.
, 1992,
Why Buildings Fall Down?
,
W. W. Norton
,
New York
.
63.
Pattison
,
K.
, 1998, “
Why Did the Dam Burst?
,”
Invention Technol.
,
14
(
1
), p.
2231
.
64.
Bazˇant
,
Z. P.
,
Vořechovský
,
M.
, and
Novák
,
D.
, 2007, “
Asymptotic Prediction of Energetic-Statistical Size Effect From Deterministic Finite Element Solutions
,”
J. Eng. Mech.
,
128
, pp.
153
162
.
65.
NKB, Nordic Committee for Building Structures, 1978, “
Recommendation for Loading and Safety Regulations for Structural Design
,” NKB Report No. 36.
66.
Melchers
,
R. E.
, 1987,
Structural Reliability, Analysis & Prediction
,
Wiley
,
New York
.
67.
Duckett
,
K.
, 2005, “
Risk Analysis and the Acceptable Probability of Failure
,”
Struct. Eng.
,
83
(
15
), pp.
25
26
.
You do not currently have access to this content.