The stability of steady slip and homogeneous shear is studied for rate-hardening materials undergoing chemical reactions that produce weaker materials (reaction-weakening process), in drained conditions. In a spring- slider configuration, a linear perturbation analysis provides analytical expressions of the critical stiffness below which unstable slip occurs. In the framework of a frictional constitutive law, numerical tests are performed to study the effects of a nonlinear reaction kinetics on the evolution of the instability. Slip instabilities can be stopped at relatively small slip rates (only a few orders of magnitude higher than the forcing velocity) when the reactant is fully depleted. The stability analysis of homogeneous shear provides an independent estimate of the thickness of the shear localization zone due to the reaction weakening, which can be as low as 0.1 m in the case of lizardite dehydration. The potential effect of thermo-chemical pore fluid pressurization during dehydration is discussed, and shown to be negligible compared to the reaction-weakening effect. We finally argue that the slip instabilities originating from the reaction-weakening process could be a plausible candidate for intermediate depth earthquakes in subduction zones.

References

References
1.
Raleigh
,
C. B.
, and
Paterson
,
M. S.
, 1965, “
Experimental Deformation of Serpentinite and its Tectonic Implications
,”
J. Geophys. Res.
,
70
(
16
), pp.
3965
3985
.
2.
Heard
,
H. C.
, and
Rubey
,
W. W.
, 1966, “
Tectonic Implications of Gypsum Dehydration
,”
Geol. Soc. Am. Bull.
,
77
, pp.
741
760
.
3.
Murrell
,
S. A. F.
, and
Ismail
,
I. A. H.
, 1976, “
The Effect of Decomposition of Hydrous Minerals on the Mechanical Properties of Rocks
,”
Tectonophysics
,
31
, pp.
207
258
.
4.
Ko
,
S.-C.
,
Olgaard
,
D. L.
, and
Briegel
,
U.
, 1995, “
The Transition from Weakening to Strengthening in Dehydrating Gypsum: Evolution of Excess Pore Pressures
,”
Geophys. Res. Lett.
,
22
(
9
), pp.
1009
1012
.
5.
Milsch
,
H.
, and
Scholz
,
C. H.
, 2005, “
Dehydration-Induced Weakening and Fault Slip in Gypsum: Implications for the Faulting Process at Intermediate Depth in Subduction Zones
,”
J. Geophys. Res.
,
110
,
B04202
.
6.
Wong
,
T.-F.
,
Ko
,
S.-C.
, and
Olgaard
,
D. L.
, 1997, “
Generation and Maintenance of Pore Pressure Excess in a Dehydrating System 2. Theoretical Analysis
,”
J. Geophys. Res.
,
102
(
B1
), pp.
841
852
.
7.
Brantut
,
N.
,
Sulem
,
J.
, and
Schubnel
,
A.
, 2011, “
Effect of Dehydration Reactions on Earthquake Nucleation: Stable Sliding, Slow Transient and Unstable Slip
,”
J. Geophys. Res.
,
116
,
B05304
.
8.
Rutter
,
E. H.
, and
Brodie
,
K. H.
, 1988, “
Experimental ‘Syntectonic’ Dehydration of Serpentinite Under Conditions of Controlled Pore Water Pressure
,”
J. Geophys. Res.
,
93
(
B5
), pp.
4907
4932
.
9.
Rutter
,
E. H.
, and
Brodie
,
K. H.
, 1995, “
Mechanistic Interactions Between Deformation and Metamorphism
,”
Geol. J.
,
30
, pp.
227
240
.
10.
Arkwright
,
J. C.
,
Rutter
,
E. H.
,
Brodie
,
K. H.
, and
Llana-Fúnez
,
S.
, 2008, “
Role of Porosity and Dehydration Reactions on the Deformation of Hot-Pressed Serpentinite Aggregates
,”
J. Geol. Soc. (London)
,
165
, pp.
639
649
.
11.
Rutter
,
E. H.
,
Llana-Fùnez
,
S.
, and
Brodie
,
K. H.
, 2009, “
Dehydration and Deformation of Intact Cylinders of Serpentinite
,”
J. Struct. Geol.
,
31
, pp.
29
43
.
12.
Hirose
,
T.
,
Bystricky
,
M.
,
Kunze
,
K.
, and
Stünitz
,
H.
, 2006, “
Semi-Brittle Flow during Dehydration of Lizardite-Chrysotile Serpentinite Deformed in Torsion: Implication for the Rheology of Oceanic Lithosphere
,”
Earth Planet. Sci. Lett.
,
249
, pp.
484
493
.
13.
Chernak
,
L. J.
, and
Hirth
,
G.
, 2010, “
Deformation of Antigorite Serpentinite at High Temperature and Pressure
,”
Earth Planet. Sci. Lett.
,
29
, pp.
23
33
.
14.
Sulem
,
J.
, and
Famin
,
V.
, 2009, “
Thermal Decomposition of Carbonates in Fault Zones: Slip-Weakening and Temperature-Limiting Effects
,”
J. Geophys. Res.
,
114
,
B03309
.
15.
Brantut
,
N.
,
Schubnel
,
A.
,
Corvisier
,
J.
, and
Sarout
,
J.
, 2010, “
Thermochemical Pressurization of Faults During Coseismic Slip
,”
J. Geophys. Res.
,
115
,
B05314
16.
Baumberger
,
T.
,
Berthoud
,
P.
, and
Caroli
,
C.
, 1999, “
Physical Analysis of the State- and Rate-Dependent Friction Law. II. Dynamic Friction
,”
Phys. Rev. B
,
60
(
6
), pp.
3928
3939
.
17.
Rice
,
J. R.
,
Lapusta
,
N.
, and
Ranjith
,
K.
, 2001, “
Rate and State Dependent Friction and the Stability of Sliding between Elastically Deformable Solids
,”
J. Mech. Phys. Solids
,
49
, pp.
1865
1898
.
18.
Nakatani
,
M.
, 2001, “
Conceptual and Physical Clarification of Rate and State Friction: Frictional Sliding as a Thermally Activated Rheology
,”
J. Geophys. Res.
,
106
(
B7
), pp.
13347
13380
.
19.
Holland
,
T. J. B.
, and
Powell
,
R.
, 1998, “
An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest
,”
J. Metamorph. Geol.
,
16
, pp.
309
343
.
20.
Evans
,
B. W.
, 2004, “
The Serpentinite Multisystem Revisited: Chrysotile is Metastable
,”
Int. Geol. Rev.
,
24
(
6
), pp.
479
506
.
21.
Llana-Fúnez
,
S.
,
Brodie
,
K. H.
,
Rutter
,
E. H.
, and
Arkwright
,
J. C.
, 2007, “
Experimental Dehydration Kinetics of Serpentinite using Pore Volumometry
,”
J. Metamorph. Geol.
,
25
, pp.
423
438
.
22.
Moore
,
D. E.
,
Lockner
,
D. A.
,
Shengli
,
M.
,
Summers
,
R.
, and
Byerlee
,
J. D.
, 1997, “
Strengths of Serpentinite Gouges at Elevated Temperatures
,”
J. Geophys. Res.
,
102
(
B7
), pp.
14787
14801
.
23.
Segall
,
P.
, and
Rice
,
J. R.
, 2006, “
Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation?
,”
J. Geophys. Res.
,
111
,
B09316
24.
Rice
,
J. R.
, 2006, “
Heating and Weakening of Faults during Earthquake Slip
,”
J. Geophys. Res.
,
111
,
B05311
.
25.
Rice
,
J. R.
, and
Rudnicki
,
J. W.
, 2004, “
Stability of Spatially Uniform, Adiabatic, Undrained Shear of a Fault Zone
,” unpublished manuscript.
26.
Platt
,
J. D.
,
Rice
,
J. R.
, and
Rudnicki
,
J. W.
, 2010, “
Strain Localization within a Fluid-Saturated Fault Gouge Layer during Seismic Shear, Abstract T31D-03
,”
Proceedings of the 2010 Fall Meeting, AGU
, Dec. 13–17,
San Francisco, CA
.
27.
Rice
,
J. R.
,
Rudnicki
,
J. W.
, and
Tsai
,
V. C.
, 2005, “
Shear Localization in Fluid-Saturated Fault Gouge by Instability of Spatially Uniform, Adiabatic, Undrained Shear
,”
Eos Trans. AGU 86(52)
, Fall Meeting Supplement, Abstract No. T13E-05.
28.
Platt
,
J. D.
,
Brantut
,
N.
, and
Rice
,
J. R.
, 2011, “
Strain Localization Driven by Thermal Decomposition During Seismic Shear
,”
oral presentation at the 2011 fall meeting
, AGU, Dec. 5–9, San Francisco, CA.
29.
Segall
,
P.
, and
Rice
,
J. R.
, 1995, “
Dilatancy, Compaction, and Slip Instability of a Fluid-Infiltrated Fault
,”
J. Geophys. Res.
,
100
(
B11
), pp.
22155
22171
.
30.
Garagash
,
D. I.
, and
Rudnicki
,
J. W.
, 2003, “
Shear Heating of a Fluid-Saturated Slip-Weakening Dilatant Fault Zone 1. Limiting Regimes
,”
J. Geophys. Res.
,
108
(
B2
),
2121
.
31.
Walker
,
A. N.
,
Rutter
,
E. H.
, and
Brodie
,
K. H.
, 1990, “
Experimental Study of Grain-Size Sensitive Flow of Synthetic, Hot-Pressed Calcite Rocks
,”
Geol. Soc. Spec. Publ. (London)
54
, pp.
259
284
.
32.
Tullis
,
T. E.
,
Horowitz
,
F. G.
, and
Tullis
,
J.
, 1991, “
Flow Laws of Polyphase Aggregates from End-Member Flow Laws
,”
J. Geophys. Res.
,
96
(
B5
), pp.
8081
8096
.
33.
Liu
,
M.
, 1997, “
A Constitutive Model for Olivine-Spinel Aggregates and its Application to Deep Earthquake Nucleation
,”
J. Geophys. Res.
,
102
(
B3
), pp.
5295
5312
.
34.
Kirby
,
S. H.
, 1987, “
Localized Polymorphic Phase Transformations in High-Pressure Faults and Applications to the Physical Mechanism of Deep Earthquakes
,”
J. Geophys. Res.
,
92
(
B13
), pp.
13789
13800
.
35.
Hobbs
,
B. E.
, and
Ord
,
A.
, 1988, “
Plastic Instabilities: Implications for the Origin of Intermediate and Deep Focus Earthquakes
,”
J. Geophys. Res.
,
93
(
B9
), pp.
10521
10540
.
36.
Frohlich
,
C.
, 1989, “
The Nature of Deep-Focus Earthquakes
,”
Annu. Rev. Earth Planet. Sci.
,
17
, pp.
227
254
.
37.
Green
,
H. W.
, and
Houston
,
H.
, 1995, “
The Mechanics of Deep Earthquakes
,”
Annu. Rev. Earth Planet. Sci.
,
23
, pp.
169
213
.
38.
John
,
T.
,
Medvedev
,
S.
,
Rüpke
,
L. H.
,
Andersen
,
T. B.
,
Podladchikov
,
Y. Y.
, and
Austreim
,
H.
, 2009, “
Generation of Intermediate-Depth Eathquakes by Self-Localizing Thermal Runaway
,”
Nat. Geosci.
,
2
, pp.
137
140
.
39.
Green
,
H. W.
, and
Marone
,
C.
, 2002, “
Instability of Deformation, Plastic Deformation of Rocks
,”
Rev. Mineral. Geochem.
,
51
(
1
), pp.
181
199
.
40.
Hirose
,
H.
,
Hirahara
,
K.
,
Kimata
,
F.
,
Fujii
,
N.
, and
Miyazaki
,
S.
, 1999, “
A Slow Thrust Slip Event Following the two 1996 Hyuganada Earthquakes beneath the Bungo Channel, Southwest Japan
,”
Geophys. Res. Lett.
,
26
(
21
), pp.
3237
3240
.
41.
Dragert
,
H.
,
Wang
,
K.
, and
James
,
T. S.
, 2001, “
A Slient Slip Event on the Deeper Cascadia Subduction Zone
,”
Science
,
292
, pp.
1525
1528
.
42.
Rogers
,
G.
, and
Dragert
,
H.
, 2003, “
Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip
,”
Science
,
300
, pp.
1942
1943
.
43.
Obara
,
K.
,
Hirose
,
H.
,
Yamamizu
,
F.
, and
Kasahara
,
K.
, 2004, “
Episodic Slow Slip Events Accompanied by Non-Volcanic Tremors in Southwest Japan Subduction Zone
,”
Geophys. Res. Lett.
,
31
,
L23602
.
You do not currently have access to this content.