Motivated by observations of the subglacial drainage of water, we consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully turbulent fluid flow. Using a hybrid Chebyshev/series-minimization numerical approach, we solve for the pressure profile, crack opening displacement, and crack growth rate for a crack that begins relatively short but eventually becomes long compared with the distance to the free surface. We plot nondimensionalized results for a variety of different times, corresponding with different fracture lengths, and find substantial differences when free-surface effects are important.

References

References
1.
Spence
,
D. A.
, and
Sharp
,
P.
, 1985, “
Self-Similar Solutions for Elastohydrodynamic Cavity Flow
,”
Proc. R. Soc. London, Ser. A
,
400
, pp.
289
313
.
2.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A.
, 1994, “
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
,
447
, pp.
39
48
.
3.
Adachi
,
J. I.
, and
Detournay
,
E.
, 2002, “
Self-Similar Solution of a Plane-Strain Fracture Driven by a Power-Law Fluid
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
26
, pp.
579
604
.
4.
Zhang
,
X.
,
Detournay
,
E.
, and
Jeffrey
,
R.
, 2002, “
Propagation of a Penny-Shaped Hydraulic Fracture Parallel to the Free-Surface of an Elastic Half-Space
,”
Int. J. Fract.
,
115
, pp.
125
158
.
5.
Bunger
,
A. P.
, and
Detournay
,
E.
, 2005, “
Propagation of a Penny-Shaped Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
,
39
, pp.
6311
6337
.
6.
Nilson
,
R. H.
, 1981, “
Gas-Driven Fracture Propagation
,”
J. Appl. Mech.
,
48
, pp.
757
762
.
7.
Tsai
,
V. C.
, and
Rice
,
J. R.
, 2010, “
A Model for Turbulent Hydraulic Fracture and Application to Crack Propagation at Glacier Beds
,”
J. Geophys. Res.
,
115
, pp.
1
18
.
8.
Das
,
S.
,
Joughin
,
I.
,
Behn
,
M. D.
,
Howat
,
I. M.
,
King
,
M. A.
,
Lizarralde
,
D.
, and
Bhatia
,
M. P.
, 2008, “
Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage
,”
Science
,
320
, pp.
778
781
.
9.
Rubin
,
A. M.
, 1993, “
Dikes vs. Diapirs in Viscoelastic Rock
,”
Earth Planet. Sci. Lett.
,
119
, pp.
641
659
.
10.
Manning
,
R.
, 1891, “
On the Flow of Water in Open Channels and Pipes
,”
Trans. Inst. Civil Eng.
,
20
, pp.
161
207
.
11.
Strickler
,
A.
, 1923, “
Beitrage zur frage der geschwindigkeitsformel und der rauhigkeitszahlen fur strome, kanale und geschlossene leitungen
,” Technical report, Mitteilungen des Eidgenossischen Amtes fur Wasserwirtschaft
16
, Bern, Switzerland.
12.
Strickler
,
A.
, 1981,
Contributions to the Question of a Velocity Formula and Roughness Data for Streams, Channels and Closed Pipelines
,
T.
Roesgen
and
W. R.
Brownlie
, translators, W. M. Keck Lab of Hydraulics and Water Resourses,
California Institute of Technology
,
Pasadena, CA
.
13.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
14.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
3rd ed.
,
Noordhoff Ltd.
,
Groningen, Holland
.
15.
Erdogan
,
F.
,
Gupta
,
G. D.
, and
Cook
,
T. S.
, 1973, “
Numerical Solution of Singular Integral Equations
,”
Methods of Analysis and Solution of Crack Problems. Recent Developments in Fracture Mechanics
,
G. C.
Sih
, ed.,
Leyden, Noordhoff Int. Pub.
,
San Diego,CA,
pp.
368
425
.
16.
Higashida
,
Y.
, and
Kamada
,
K.
, 1982, “
Stress Fields Around a Crack Lying Parallel to a Free Surface
,”
Int. J. Fract.
,
19
, pp.
39
52
.
17.
Rubin
,
H.
, and
Atkinson
,
J.
, 2001,
Environmental Fluid Mechanics
,
Marcel Dekker, Inc.
,
New York
.
18.
Gioia
,
G.
, and
Chakraborty
,
P.
, 2006, “
Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory
,”
Phys. Rev. Lett.
,
96
, pp.
1
4
.
19.
Lister
,
J. R.
, 1990, “
Buoyancy-Driven Fluid Fracture: The Effects of Material Toughness and of Low-Viscosity Precursors
,”
J. Fluid Mech.
,
210
, pp.
263
280
.
20.
Viesca
,
R. C.
, and
Rice
,
J. R.
, 2011, “
Elastic Reciprocity and Symmetry Constraints on the Stress Field due to a Surface-Parallel Distribution of Dislocations
,”
J. Mech. Phys. Solids
,
59
, pp.
753
757
.
21.
Garagash
,
D. I.
, and
Detournay
,
E.
, 2005, “
Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution
,”
J. Appl. Mech.
,
72
, pp.
916
928
.
22.
Schoof
,
C.
, 2010, “
Ice-Sheet Acceleration Driven by Melt Supply Variability
,”
Nature
,
468
, pp.
803
806
.
23.
Pimentel
,
S.
, and
Flowers
,
G. E.
, 2011, “
A Numerical Study of Hydrologically Driven Glacier Dynamics and Subglacial Flooding
,”
Proc. R. Soc., Math. Physic. Eng. Sci.
,
467
, pp.
537
558
.
You do not currently have access to this content.