Rice’s internal variables formalism [1975, “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,” in Constitutive Equations in Plasticity, edited by A. Argon, MIT Press, Cambridge, MA, pp. 23–75] is one of the basic tools in the micromechanics of materials. One of its implications is the possibility to relate the compliance/resistivity contributions of cracks—the key quantities in the problem of effective elastic/conductive properties—to the stress intensity factors (SIFs) and thus to utilize a large library of available solutions for SIFs. Examples include configurations that are common in materials science applications: branched and intersecting cracks, cracks with partial contact between crack faces, and cracks emanating from pores. The formalism also yields valuable physical insights of a qualitative character, such as the impossibility to correlate, in a quantitative way, the strength of microcracking materials and their stiffness reduction.

References

References
1.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.
2.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials—A Survey
,”
J. Appl. Mech.
,
50
, pp.
481
505
.
3.
Kachanov
,
M.
, and
Sevostianov
,
I.
, 2005, “
On Quantitative Characterization of Microstructures and Effective Properties
,”
Int. J. Solids Struct.
,
42
, pp.
309
336
.
4.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2008, “
Connections Between Elastic and Conductive Properties of Heterogeneous Materials
,”
Advances in Applied Mechanics
,
E. van
der Giessen
and
H.
Aref
, eds.,
Academic
,
New York
, Vol.
42
, pp.
69
252
.
5.
Rice
,
J.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A.
Argon
, ed.,
MIT Press
, pp.
23
75
.
6.
Sevostianov
,
I.
, 2006, “
Thermal Conductivity of a Material Containing Cracks of Arbitrary Shape
,”
Int. J. Eng. Sci.
,
44
, pp.
513
528
.
7.
Kachanov
,
M.
, and
Montagut
,
E.
, 1988, “
A Simple Analysis of Intersecting Cracks and Cracks Intersecting a Hole
,”
Int. J. Fracture
,
40
, pp.
R61
R65
.
8.
Grechka
,
V.
, and
Kachanov
,
M.
, 2006, “
Effective Elasticity of Rocks With Closely Spaced and Intersecting Cracks
,”
Geophysics
,
71
, pp.
D85
D91
.
9.
Mear
,
M. E.
,
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2007, “
Elastic Compliances of Non-Flat Cracks
”,
Int. J. Solids Struct.
,
44
, pp.
6412
6427
.
10.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Erdogan
,
F.
, 1962, “
Crack Tip Stress Intensity Factors for Plane Extension and Plate Bending Problems
,”
ASME J. Appl. Mech.
,
29
, pp.
306
316
.
11.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,1973,
The Stress Analysis of Cracks: Handbook
,
Del Research Corporation
,
Hellertown, PA
.
12.
Cotterell
,
B.
, and
Rice
,
J. R.
, 1980, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fracture
,
16
, pp.
155
169
.
13.
Gorbatikh
,
L.
, 2004, “
On Elastic Compliances of Interfacial Cracks
,”
Int. J. Fracture
,
127
, pp.
L141
L148
.
14.
Sevostianov
,
I.
,
Picazo
,
M.
, and
Garcia
,
J. R.
, 2011, “
Effect of Branched Cracks on the Elastic Compliance of a Material
,”
Int. J. Eng. Sci.
,
49
, pp.
1062
1077
.
15.
Isida
,
M.
, and
Noguchi
,
H.
, 1992, “
Stress Intensity Factors at Tips of Branched Cracks Under Various Loadings
,”
Int. J. Fracture
,
54
, pp.
293
316
.
16.
Picazo
,
M.
, and
Sevostianov
,
I.
, 2011, “
On the Elastic Compliance of a Circular Hole With Two Symmetric Radial Cracks Initiated at Its Boundary
,”
Int. J. Fracture
,
167
, pp.
273
280
.
17.
Newman
,
J. C.
, 1971, “
An Improved Method of Collocation for the Stress Analysis of Cracked Plates With Various Shaped Boundaries
,” NASA Technical Note D-6376.
18.
Baratta
,
F. I.
, 1978, “
Stress Intensity Factor Estimates for a Peripherally Cracked Spherical Void and a Hemispherical Surface Pit
,”
J. Am. Ceram. Soc.
,
61
, pp.
490
493
.
19.
Green
,
D. J.
, 1980, “
Stress Intensity Factor Estimates for Annular Cracks at Spherical Voids
,”
J. Am. Ceram. Soc.
,
63
, pp.
342
344
.
20.
Trantina
,
G. G.
, and
Barishpolsky
,
M.
, 1984, “
Elastic-Plastic Analysis of Small Defects—Voids and Inclusions
,”
Eng. Fracture Mech.
,
20
, pp.
1
10
.
21.
Fett.
,
T.
, 1994, “
Stress Intensity Factors and Weight Function for a Void With an Annular Crack
,”
Int. J. Fracture
,
67
, pp.
R41
R47
.
22.
Smetanin
,
B. I.
, 1968, “
The Problem of Extension of an Elastic Space Containing a Plane Annular Slit
,” PMM (translation of Applied Mathematics and Mechanics),
32
, pp.
461
466
.
23.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2001, “
Elastic Compliance of an Annular Crack
,”
Int. J. Fracture
,
110
, pp.
L51
L54
.
24.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2002, “
On Elastic Compliances of Irregularly Shaped Cracks
,”
Int. J. Fracture
,
114
, pp.
245
257
.
25.
Sevostianov
,
I.
, 2010, “
Incremental Elastic Compliance and Electric Resistance of a Cylinder With Partial Loss in the Cross-Sectional Area
,”
Int. J. Eng. Sci.
,
48
, pp.
582
591
.
26.
O’Brien
,
T. K.
, and
Reifsnider
,
K. L.
, 1977, “
Fatigue Damage: Stiffness/Strength Comparison for Composite Materials
,”
J. Test. Eval.
,
5
, pp.
384
393
.
27.
Reifsnider
,
K.
, and
Stinchcomb
,
W.
, 1983, “
Stiffness Change As a Fatigue Damage Parameter for Composite Laminates
,”
Advances in Aerospace Structures, Materials and Dynamics
,
U.
Yuceoglu
et al.
, eds.,
ASME
,
New York
, pp.
1
6
.
28.
Kachanov
,
M.
, 1994, “
Elastic Solids With Many Cracks and Related Problems
,”
Advances in Applied Mechanics
,
J.
Hutchinson
and
T.
Wu
, eds.,
Academic
,
New York
, pp.
256
426
.
29.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2010, “
Local Minima and Gradients of Stiffness and Conductivity As Indicators of Strength Reduction of Brittle-Elastic Materials
,”
Int. J. Fracture
,
164
, pp.
147
154
.
30.
Sevostianov
,
I.
,
Zagrai
,
A.
,
Kruse
,
W. A.
, and
Hardee
,
H.
, 2010, “
Connection Between Strength Reduction, Electric Resistance and Electro-Mechanical Impedance in Materials With Fatigue Damage
,”
Int. J. Fracture
,
164
, pp.
159
166
.
31.
Caiulo
,
A.
, and Kachanov, M, 2010, “
On Absence of Quantitative Correlations Between Strength and Stiffness in Microcracking Materials
,”
Int. J. Fracture
,
164
, pp.
155
158
.
32.
Murakami
,
Y.
, 1987,
Stress Intensity Factors Handbook
,
Pergamon
,
New York
.
You do not currently have access to this content.