The propagation of elastic waves in a periodic laminate is considered. The stratified medium is modeled as a homogenized material where the stress depends on the strain and additional higher order strain gradient terms. The homogenization scheme is based on a lattice model approximation tuned on the dispersive properties of the real laminate. The long-wave asymptotic approximation of the model shows that, despite the simplicity of the parameters identification, the proposed approach agrees well with the exact solution in a wide range of elastic impedance contrasts, also in comparison with different approximations. The effect of increasing order of approximation is also investigated. A final example of a finite structure under an impact excitation proves that the model behaves well when applied in the transient regime and that it can be considered a simple but consistent approach to build efficient algorithms for the numerical analysis of elastodynamics problems.

References

References
1.
Cosserat
,
E.
, and
Cosserat
,
F.
, 1909,
Theorie des Corps Deformables
,
Hermann & Fils
,
Paris
.
2.
Brillouin
,
L.
, 1953,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Dover
,
New York
.
3.
Mindlin
,
R. D.
, 1964, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
, pp.
52
78
.
4.
Santosa
,
F.
, and
Symes
,
W. W.
, 1991, “
A Dispersive Effective Medium for Wave Propagation in Periodic Composites
,”
SIAM J. Appl. Math.
,
51
, pp.
984
1005
.
5.
Chen
,
W.
, and
Fish
,
J.
, 2001, “
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
,”
ASME J. Appl. Mech.
,
68
, pp.
153
161
.
6.
Wang
,
Z.-P.
, and
Sun
,
C. T.
, 2002, “
Modeling Micro-Inertia in Heterogeneous Materials Under Dynamic Loading
,”
Wave Motion
,
36
, pp.
473
485
.
7.
Askes
,
H.
,
Bennett
,
T.
, and
Aifantis
,
E. C.
, 2007, “
A New Formulation and C0 Implementation of Dynamically Consistent Gradient Elasticity
,”
Int. J. Numer. Methods Eng.
,
72
, pp.
111
126
.
8.
Bennett
,
T.
,
Gitman
,
I. M.
, and
Askes
,
H.
, 2007, “
Elasticity Theories With Higher-Order Gradients of Inertia and Stiffness for the Modelling of Wave Dispersion in Laminates
,”
Int. J. Fract.
,
148
, pp.
185
193
.
9.
Carta
,
G.
,
Bennett
,
T.
, and
Askes
,
H.
, 2011, “
Verification of the Length Scales of Dynamic Gradient Elasticity Using Spectral Analysis
,”
Proc. Inst. Civil Eng.
, (to be published).
10.
Maugin
,
G. A.
, 1999,
Nonlinear Waves in Elastic Crystals
,
Oxford University Press
,
Oxford
.
11.
Engelbrecht
,
J.
,
Berezovski
,
A.
,
Pastrone
,
F.
, and
Braun
,
M.
, 2005, “
Waves in Microstructured Materials and Dispersion
,”
Philos. Mag.
,
85
, pp.
4127
4141
.
12.
Nayfeh
,
A. H.
, 1995, “
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,”
North-Holland Series in Applied Mathematics and Mechanics
, Vol.
39
,
Elsevier
,
Amsterdam
.
13.
Brun
,
M.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Bigoni
,
D.
, 2010, “
Dynamics of Structural Interfaces: Filtering and Focussing Effects for Elastic Waves
,”
J. Mech. Phys. Solids
,
58
, pp.
1212
1224
.
14.
Kollar
,
L. P.
, and
Springer
,
G. S.
, 2003,
Mechanics of Composite Structures
,
Cambridge University Press
,
Cambridge
.
15.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer
,
New York
.
16.
Askes
,
H.
, and
Metrikine
,
A.V.
, 2002, “
One-Dimensional Dynamically Consistent Gradient Elasticity Models Derived from a Discrete Microstructure. Part 2: Static and Dynamic Response
”,
Eur. J. Mech. A/Solids
,
21
, pp.
573
588
.
17.
Valkó
,
P. P.
, and
Abate
,
J.
, 2004, “
Comparison of Sequence Accelerators for the Gaver Method of Numerical Laplace Transform Inversion
,”
Comp. Math. Appl.
,
48
, pp.
629
636
.
18.
http://library.wolfram.com/infocenter/MathSource/4738
19.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method. Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
You do not currently have access to this content.