In this paper, a mixed method that combines the Ritz method and the triangular quadrature rule (TQR) is presented for solving time-dependent problems. In this study, the Ritz method is first used to discretize the spatial partial derivatives. The TQR is then employed to analogize the temporal derivatives. The resulting algebraic formulation is a triangular matrix equation, which reduces to the solution of a system of algebraic equations of the size of the problem for each time step. This requires less computational effort compared to the differential quadrature method (DQM) where a larger system of the size of the problem should be solved within each time element. The mixed formulation combines the simplicity of the Ritz method and accuracy and computational efficiency of the TQR. The stability property and computational efficiency of the scheme are discussed in detail. Numerical results show that the proposed mixed methodology can be used as an efficient tool for handling the time-dependent problems.

References

References
1.
Katz
,
R.
,
Lee
,
C. W.
,
Ulsoy
,
A.
, and
Scott
,
R. A.
, 1987, “
Dynamic Stability and Response of a Beam Subjected to a Deflection Dependent Moving Load
,”
ASME J. Vibr. Acoust., Stress, Reliab. Des.
,
109
, pp.
361
365
.
2.
Fryba
,
L.
, 1972,
Vibration of Solids and Structures Under Moving Loads
,
Noordhoff International
,
Groningen, the Netherlands
.
3.
Nelson
,
H. D.
, and
Conover
,
R. A.
, 1971, “
Dynamic Stability of a Beam Carrying Moving Masses
,”
ASME J. Appl. Mech.
,
38
, pp.
1003
1006
.
4.
Hutton
,
D. V.
, and
Counts
,
J.
, 1974, “
Deflections of a Beam Carrying a Moving Mass
,”
ASME J. Appl. Mech.
,
41
, pp.
803
804
.
5.
Benedetti
,
G. A.
, 1974, “
Dynamic Stability of a Beam Loaded by a Sequence of Moving Mass Particles
,”
ASME J. Appl. Mech.
,
41
, pp.
1069
1071
.
6.
Saigal
,
S.
, 1986, “
Dynamic Behavior of Beam Structures Carrying Moving Masses
,”
ASME J. Appl. Mech.
,
53
, pp.
222
224
.
7.
Duffy
,
D. G.
, 1990, “
The Response of an Infinite Railroad Track to a Moving, Vibrating Mass
,”
ASME J. Appl. Mech.
,
57
, pp.
66
73
.
8.
Esmailzadeh
,
E.
, and
Ghorashi
,
M.
, 1995, “
Vibration Analysis of Beams Traversed by Uniform Partially Distributed Moving Masses
,”
J. Sound Vib.
,
184
, pp.
9
17
.
9.
Rao
,
G. V.
, 2000, “
Linear Dynamics of an Elastic Beam Under Moving Loads
,”
ASME J. Vibr. Acoust.
,
122
, pp.
281
289
.
10.
Lee
,
K.-Y.
, and
Renshaw
,
A. A.
, 2000, “
Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions
,”
ASME J. Appl. Mech.
,
67
, pp.
823
827
.
11.
Nikkhoo
,
A.
,
Rofooei
,
F. R.
, and
Shadnam
,
M. R.
, 2007, “
Dynamic Behavior and Modal Control of Beams Under Moving Mass
,”
J. Sound Vib.
,
306
, pp.
712
724
.
12.
Dehestani
,
M.
,
Mofid
,
M.
, and
Vafai
,
A.
, 2009, “
Investigation of Critical Influential Speed for Moving Mass Problems on Beams
,”
Appl. Math. Model.
,
33
(
10
), pp.
3885
3895
.
13.
Kiani
,
K.
,
Nikkhoo
,
A.
, and
Mehri
,
B.
, 2009, “
Parametric Analyses of Multispan Viscoelastic Shear Deformable Beams Under Excitation of a Moving Mass
,”
ASME J. Vibr. Acoust.
,
131
, p.
051009
.
14.
Mofid
,
M.
,
Tehranchi
,
A.
, and
Ostadhossein
,
A.
, 2010, “
On the Viscoelastic Beam Subjected to Moving Mass
,”
Adv. Eng. Software
,
41
(
2
), pp.
240
247
.
15.
Khalili
,
S. M. R.
,
Jafari
,
A. A.
, and
Eftekhari
,
S. A.
, 2010, “
A Mixed Ritz-DQ Method for Forced Vibration of Functionally Graded Beams Carrying Moving Loads
,”
Compos. Struct.
,
92
(
10
), pp.
2497
2511
.
16.
Oni
,
S. T.
, and
Omolofe
,
B.
, 2011, “
Dynamic Response of Prestressed Rayleigh Beam Resting on Elastic Foundation and Subjected to Masses Traveling at Varying Velocity
,”
ASME J. Vibr. Acoust.
,
133
, p.
041005
.
17.
Wu
,
J -J.
, 2005, “
Dynamic Analysis of an Inclined Beam Due to Moving Loads
,”
J. Sound Vibr.
,
288
, pp.
107
131
.
18.
Fung
,
T. C.
, 1998, “
Complex Time-Step Newmark Methods With Controllable Numerical Dissipation
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
65
93
.
19.
Kujawski
,
J.
, and
Gallagher
,
R. H.
, 1989, “
A Generalized Least-Squares Family of Algorithms for Transient Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
,
18
, pp.
539
550
.
20.
Gellert
,
M.
, 1978, “
A New Algorithm for Integration of Dynamic Systems
,”
Comput. Struct.
,
9
, pp.
401
408
.
21.
Mancuso
,
M.
, and
Ubertini
,
F.
, 2001, ”
Collocation Methods With Controllable Dissipation for Linear Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3607
3621
.
22.
Tanaka
,
M.
, and
Chen
,
W.
, 2001, “
Coupling Dual Reciprocity BEM and Differential Quadrature Method for Time-Dependent Diffusion Problems
,”
Appl. Math. Model.
,
25
, pp.
257
268
.
23.
Fung
,
T. C.
, 2002, “
Stability and Accuracy of Differential Quadrature Method in Solving Dynamic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1311
1331
.
24.
Chen
,
W.
, and
Tanaka
,
M.
, 2002, “
A Study on Time Schemes for DRBEM Analysis of Elastic Impact Wave
,”
Comput. Mech.
,
28
, pp.
331
338
.
25.
Eftekhari
,
S. A.
,
Farid
,
M.
, and
Khani
,
M.
, 2009, “
Dynamic Analysis of Laminated Composite Coated Beams Carrying Multiple Accelerating Oscillators Using a Coupled Finite Element-Differential Quadrature Method
,”
ASME J. Appl. Mech.
,
76
, p.
061001
.
26.
Eftekhari
,
S. A.
, and
Khani
,
M.
, 2010, “
A Coupled Finite Element-Differential Quadrature Element Method and its Accuracy for Moving Load Problem
,”
Appl. Math. Model.
,
34
, pp.
228
237
.
27.
Jafari
,
A. A.
, and
Eftekhari
,
S. A.
, 2011, “
A New Mixed Finite Element-Differential Quadrature Formulation for Forced Vibration of Beams Carrying Moving Loads
,”
ASME J. Appl. Mech.
,
78
, p.
011020
.
28.
Mancuso
,
M.
,
Ubertini
,
F.
, and
Momanyi
,
F. X.
, 2000, “
Time Continuous Galerkin Methods for Linear Heat Conduction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
189
, pp.
91
106
.
29.
Li
,
X. D.
, and
Wiberg
,
N.-E.
, 1996, “
Structural Dynamic Analysis by a Time-Discontinuous Galerkin Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
2131
2152
.
30.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentic-Hall
,
Englewood Cliffs, NJ
.
31.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
,
5th ed.
,
Butterworth-Heinemann
,
Oxford
.
32.
Bathe
,
K. J.
, and
Wilson
,
E. L.
, 1973, “
Stability and Accuracy Analysis of Direct Integration Methods
,”
Earthquake Eng. Struct. Dyn.
,
1
, pp.
283
291
.
33.
Park
,
K. C.
, 1975, “
An Improved Stiffy Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations
,”
ASME J. Appl. Mech.
,
42
, pp.
464
470
.
34.
Hughes
,
T. J. R.
, 1976, “
Stability, Convergence and Growth and Decay of the Average Acceleration Method in Nonlinear Structural Dynamics
,”
Comput. Struct.
,
6
, pp.
313
324
.
35.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
, pp.
283
292
.
36.
Hilber
,
H. M.
, and
Hughes
,
T. J. R.
, 1978, “
Collocation, Dissipation and ‘Overshoot’ for Time Integration Schemes in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
6
, pp.
99
118
.
37.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zeinkiewicz
,
O. C.
, 1981, “
An Alpha Modification of Newmark’s Method
,”
Int. J. Numer. Methods Eng.
,
15
, pp.
1562
1566
.
38.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
, pp.
371
375
.
39.
Zhou
,
X.
, and
Tamma
,
K. K.
, 2004, “
Design, Analysis, and Synthesis of Generalized Single Step Single Solve and Optimal Algorithms for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
597
668
.
40.
Zhou
,
X.
,
Tamma
,
K. K.
, and
Sha
,
D.
, 2005, “
Design Spaces, Measures and Metrics for Evaluating Quality of Time Operators and Consequences Leading to Improved Algorithms by Design-Illustration to Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
64
, pp.
1841
1870
.
41.
Bathe
,
K. J.
, and
Wilson
,
E. L.
, 1976,
Numerical Methods in Finite Element Analysis
,
Prentic-Hall
,
Englewood Cliffs, NJ
.
42.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
43.
Rao
,
S. S.
, 2007,
Vibration of Continuous Systems
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.