Properties of Pareto optimal solutions considering bounded uncertainty are first investigated using an illustrative example of a simple truss. It is shown that the nominal values of the Pareto optimal solutions considering uncertainty are slightly different from those without considering uncertainty. Next a hybrid approach of multiobjective optimization and antioptimization is presented for force design of tensegrity structures. We maximize the lowest eigenvalue of the tangent stiffness matrix and minimize the deviation of forces from the specified target distribution. These objective functions are defined as the worst values due to the possible errors in the fabrication and construction processes. The Pareto optimal solutions are found by solving the two-level optimization–antioptimization problems using a nonlinear programming approach for the upper optimization problem and enumeration of the vertices of the uncertain region for the lower antioptimization problem.

References

References
1.
Motro
,
R.
, 1992, “
Tensegrity Systems: The State of the Art
,”
Int. J. Space Structures
,
7
(
2
), pp.
75
83
.
2.
Skelton
,
R. E.
, and
de Olivia
,
M. C.
, 2009,
Tensegrity Systems
,
Springer
,
New York
.
3.
Murakami
,
H.
, and
Nishimura
,
Y.
, 2001, “
Static and Dynamic Characterization of Some Tensegrity Modules
,”
J. Appl. Mech.
,
68
(
1
), pp.
19
27
.
4.
Crane
III,
C. D.
,
Duffy
,
J.
, and
Correa
,
J. C.
, 2005, “
Static Analysis of Tensegrity Structures
,”
J. Mech. Des.
,
127
, pp.
257
268
.
5.
Arsenault
,
M.
, and
Gosselin
,
C. M.
, 2005, “
Kinematic, Static, and Dynamic Analysis of a Planar One-Degree-Of-Freedom Tensegrity Mechanism
,”
J. Mech. Des.
,
127
, pp.
1152
1160
.
6.
Coughlin
,
M. F.
, and
Stamenovic
,
D.
, 1997, “
A Tensegrity Structure With Buckling Compression Elements: Application to Cell Mechanics
,”
J. Appl. Mech.
,
64
(
3
), pp.
480
486
.
7.
Canadas
,
P.
,
Wendling-Mansuy
,
S.
, and
Isabey
,
D.
, 2006, “
Frequency Response of a Viscoelastic Tensegrity Model: Structural Rearrangement Contribution to Cell Dynamics
,”
J. Biomech. Eng.
,
128
, pp.
487
495
.
8.
Connelly
,
R.
, 1999, “
Tensegrity Structures: Why Are They Stable?
,”
Rigidity Theory and Applications
,
M. F.
Thorpe
and
P. M.
Duxbury
, eds.,
Kluwer/Plenum
,
New York
, pp.
47
54
.
9.
Tibert
,
A. G.
, and
Pellegrino
,
S.
, 2003, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Structures
,
18
(
4
), pp.
209
223
.
10.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
, 2007, “
Optimization Methods for Force and Shape Design of Tensegrity Structures
,”
in Proc. 7th World Congress on Structural and Multidisciplinary Optimization
,
Seoul, Korea
, May 21–25.
11.
Ohsaki
,
M.
, and
Zhang
,
J. Y.
, 2006, “
Stability Conditions of Prestressed Pin-Jointed Structures
,”
Int. J. Non-Linear Mech.
,
41
, pp.
1109
1117
.
12.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
, 2006, “
Adaptive Force Density Method for Form-Finding Problem of Tensegrity Structures
,”
Int. J. Solids Structures
,
43
(
18–19
), pp.
5658
5673
.
13.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
, 2008, “
Topology and Shape of Tensegrity Structures
,”
Proc. 6th Int. Conf. on Computation of Shell and Spatial Structures, IASS-IACM
, Ithaca, NY, May 28–31.
14.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
, 1990,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier
,
Amsterdam
.
15.
Elishakoff
,
I.
, and
Ohsaki
,
M.
, 2010,
Optimization and Anti-Optimization of Structures Under Uncertainty
,
Imperial College Press
,
London
.
16.
Ohsaki
,
M.
,
Zhang
,
J. Y.
, and
Ohishi
,
Y.
, 2008, “
Force Design of Tensegrity Structures by Enumeration of Vertices of Feasible Region
,”
Int. J. Space Struct.
,
23
(
2
), pp.
117
126
.
17.
Ohsaki
,
M.
,
Zhang
,
J. Y.
, and
Elishakoff
,
I.
, 2008, “
Optimization and Anti-Optimization of Forces in Tensegrity Structures
,”
Proc. IASS Symposium 2008, International Association for Shell and Spatial Structures
,
Acapulco, Mexico
, October 27–31.
18.
Cohon
,
J. L.
, 1978,
Multiobjective Programming and Planning
(Mathematics in Science and Engineering, No. 140),
Academic
,
New York
.
19.
Marler
,
T.
, and
Arora
,
J. S.
, 2004, “
Survey of Multi-objective Optimization Methods for Engineering
,”
Struct. Multidisc. Optim.
,
26
(
6
), pp.
369
395
.
20.
Massa
,
F.
,
Lallemand
,
B.
, and
Tison
,
T.
, 2009, “
Fuzzy Multiobjective Optimization of Mechanical Structures
,”
Comp. Meth. Appl. Mech. Eng.
,
198
, pp.
631
643
.
21.
Tonon
,
F.
, 1999, “
Multiobjective Optimization of Uncertain Structures Through Fuzzy Set and Random Theory
,”
Comput.-Aided Civil Infrastructure Eng.
,
14
, pp.
119
140
.
22.
Rao
,
S. S.
, 1987, “
Multi-objective Optimization of Fuzzy Structural Systems
,”
Int. J. Numer. Meth. Eng.
,
24
, pp.
1157
1171
.
23.
Loetamonphong
,
J.
,
Fang
,
S.-C.
, and
Young
,
R. E.
, 2002. “
Multi-objective Optimization Problems With Fuzzy Relation Equation Constraints
,”
Fuzzy Sets Syst.
,
127
, pp.
141
164
.
24.
Tonon
,
F.
,
Mammino
,
A.
, and
Bernardinic
,
A.
, 2002, “
Multiobjective Optimization Under Uncertainty in Tunneling: Application to the Design of Tunnel Support Reinforcement With Case Histories
,”
Tunnelling Underground Space Technol.
,
17
, pp.
33
54
.
25.
Bender
,
M. J.
, and
Simonovic
,
S. P.
, 2000, “
A Fuzzy Compromise Approach to Water Resource Systems Planning Under Uncertainty
,”
Fuzzy Sets Syst.
,
115
, pp.
35
44
.
26.
Zhang
,
J. Y.
,
Ohsaki
,
M.
, and
Elishakoff
,
I.
, 2010, “
Multiobjective Hybrid Optimization-Antioptimization for Force Design of Tensegrity Structures
,”
Proc. 6th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems (CJK-OSM6)
, Paper No. J09.
27.
Monagan
,
M. P.
,
Gedded
,
K. O.
,
Heal
,
K. M.
,
Labahn
,
G.
,
Vorkoetter
,
S. M.
,
McCarron
,
J.
, and
DeMarco
,
P.
, 2004,
Maple 13 Programming Guide
,
Maplesoft
,
Waterloo, Canada
.
28.
Horn
,
R. A.
, and
Johnson
,
C. R.
, 1990,
Matrix Analysis
,
Cambridge University Press
,
Cambridge
(reprint edition).
29.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
30.
Fukuda
,
K.
, 1999, cdd+ Ver. 0.76 User’s Manual Technical Report, Inst. Operation Res., ETH-Zentrum, Zurich, Switzerland.
31.
Avis
,
D.
, and
Fukuda
,
K.
, 1992, “
A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra
,”
Discrete Comput. Geom.
,
8
, pp.
295
313
.
32.
Avis
,
D.
, and
Fukuda
,
K.
, 1996, “
Reverse Search for Enumeration
,”
Discrete Appl. Math.
,
65
(
1–3
), pp.
21
46
.
33.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2002, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
, pp.
979
1006
.
34.
Motro
,
R.
, 2003,
Tensegrity Structural Systems for the Future
,
Butterworth-Heinemann
,
London
.
You do not currently have access to this content.