This paper presents an analytical solution for the Eshelby problem of polygonal inhomogeneity in an anisotropic piezoelectric plane. By virtue of the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields in the corresponding inclusion are first expressed in terms of the line integral along its boundary with the integrand being the Green’s functions, which is carried out analytically. The Eshelby inhomogeneity relation for the elliptical shape is then extended to the polygonal inhomogeneity, with the final induced field involving only elementary functions with small steps of iteration. Numerical solutions are compared to the results obtained from other methods, which verified the accuracy of the proposed method. Finally, the solution is applied to a triangular and a rectangular quantum wire made of InAs within the semiconductor GaAs full-plane substrate.

References

References
1.
Eshelby
,
J. D.
, 1961, “
Elastic Inclusions and Inhomogeneities
,”
Progress in Solid Mechanics
,
I. N.
Sneddon
, and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, Vol.
2
, pp.
89
140
.
2.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
2nd ed.
,
Kluwer Academic Publishers
.
3.
Willis
,
J. R.
, 1981, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
,
21
, pp.
1
78
.
4.
Buryachenko
,
V. A.
, 2001, “
Multiparticle Effective Field and Related Methods in Micromechanics of Composite Materials
,”
Appl. Mech. Rev.
,
54
, pp.
1
47
.
5.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity
Oxford University Press
,
Oxford
.
6.
Jaswon
,
M. A.
, and
Bhargava
,
R. D.
, 2008, “
Two-Dimensional Elastic Inclusion Problems
,”
Math. Proc. Cambridge Philos. Soc.
,
57
, pp.
669
680
.
7.
Nozaki
,
N.
, and
Taya
,
M.
, 2001, “
Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and Related Problems
,”
J. Appl. Mech.
,
68
, pp.
441
452
.
8.
Rahman
,
M.
, 2002, “
The Isotropic Ellipsoidal Inclusion With a Polynomial Distribution of Eigenstrain
,”
J. Appl. Mech.
,
69
, pp.
593
601
.
9.
Rodin
,
G. J.
, 1996, “
Eshelby’s Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
, pp.
1977
1995
.
10.
Andreev
,
A. D.
,
Downes
,
J. R.
,
Faux
,
D. A.
, and
O’Reilly
,
E. P.
, 1999, “
Strain Distribution in Quantum Dots of Arbitrary Shape
,”
J. Appl. Phys.
,
86
, pp.
297
305
.
11.
Wang
,
B.
, 1992, “
Three-Dimensional Analysis of an Ellipsoidal Inclusion in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
29
, pp.
293
308
.
12.
Wang
,
X.
, and
Shen
,
Y. P.
, 2003, “
Inclusions of Arbitrary Shape in Magnetoelectroelastic Composite Materials
,”
Int. J. Eng. Sci.
,
41
, pp.
85
102
.
13.
Sharma
,
P.
, and
Ganti
,
S.
, 2005, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
J. Appl. Mech.
,
72
, p.
628
.
14.
Sharma
,
P.
, and
Wheeler
,
L. T.
, 2007, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
J. Appl. Mech.
,
74
, p.
447
.
15.
Wang
,
X.
,
Pan
,
E.
, and
Sudak
,
L. J.
, 2008, “
Uniform Stresses Inside an Elliptical Inhomogeneity With an Imperfect Interface in Plane Elasticity
,”
J. Appl. Mech.
,
75
, p.
054501
.
16.
Ru
,
C. Q.
, 1999, “
Analytical Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane
,”
J. Appl. Mech.
,
66
, pp.
315
322
.
17.
Ru
,
C. Q.
, 2000, “
Eshelby’s Problem for Two-Dimensional Piezoelectric Inclusions of Arbitrary Shape
,”
Proc. R. Soc. London, Ser. A
,
456
, pp.
1051
1068
.
18.
Pan
,
E.
, 2004, “
Eshelby Problem of Polygonal Inclusions in Anisotropic Piezoelectric Full- and Half-Planes
,”
J. Mech. Phys. Solids
,
52
, pp.
567
589
.
19.
Pan
,
E.
, 2004, “
Eshelby Problem of Polygonal Inclusions in Anisotropic Piezoelectric Bimaterials
,”
Proc. R. Soc. London, Ser. A
460
, pp.
537
560
.
20.
Zou
,
W. N.
,
He
,
Q. C.
, and
Zheng
,
Q. S.
, 2011, “
General Solution for Eshelby’s Problem of 2D Arbitrarily Shaped Piezoelectric Inclusions
,”
Int. J. Solids Struct.
,
48
, pp.
2681
2694
.
21.
Tiersten
,
H. F.
, 1969,
Linear Piezoelectric Plate Vibrations
,
Plenum
,
New York
.
22.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
23.
Nakasone
,
Y.
,
Nishiyama
,
H.
, and
Nojiri
,
T.
, 2000, “
Numerical Equivalent Inclusion Method: A New Computational Method for Analyzing Stress Fields in and Around Inclusions of Various Shapes
,”
Mater. Sci. Eng., A
285
, pp.
229
238
.
24.
Dong
,
C. Y.
,
Cheung
,
Y. K.
, and
Lo
,
S. H.
, 2002, “
A Regularized Domain Integral Formulation for Inclusion Problems of Various Shapes by Equivalent Inclusion Method
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
3411
3421
.
25.
Pan
,
E.
, 2002, “
Elastic and Piezoelectric Fields in Substrates GaAs (001) and GaAs (111) due to a Buried Quantum Dot
,”
J. Appl. Phys.
,
91
, pp.
6379
6387
.
26.
Li
,
S.
,
Sauer
,
R.
, and
Wang
,
G.
, 2005, “
A Circular Inclusion in a Finite Domain I. The Dirichlet-Eshelby Problem
,”
Acta Mech.
,
179
, pp.
67
90
.
You do not currently have access to this content.