The present work is concerned with new ideas of potential value for solving differential equations. First, a brief introduction to particle methods in mechanics is made by revisiting the vibrating string. The full case of nonlinear motion is studied and the corresponding nonlinear differential equations are derived. It is suggested that the particle origin of these equations is of more general interest than usually considered. A novel possibility to develop particle methods for solving differential equations in a direct way is investigated. The dynamical functional particle method (DFPM) is developed as a solution method for boundary value problems. DFPM is based on the concept of an interaction functional as a dynamical force field acting on quasi particles. The approach is not limited to linear equations. We exemplify by applying DFPM to several linear Schrödinger type of problems as well as a nonlinear case. It is seen that DFPM performs very well in comparison with some standard numerical libraries. In all cases, the convergence rates are exponential in time.

References

References
1.
Li
,
S.
, and
Liu
,
W. K.
, 2004,
Meshfree Particle Methods
,
Springer-Verlag
,
New York
.
2.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
,
55
, p.
1
.
3.
Quinn
,
T. R.
,
Tremaine
,
S.
, and
Duncan
,
M.
, 1991, “
A Three Million Year Integration of the Earth’s Orbit
,”
Astron. J.
,
101
, p.
2287
.
4.
Edvardsson
,
S.
, and
Karlsson
,
K. G.
, 2002,
Astron. Astrophys.
,
384
, p.
689
.
5.
Edvardsson
,
S.
, and
Karlsson
,
K.
, 2008,
Astron. J.
,
135
, p.
1151
.
6.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
Discrete Numerical-Model for Granular Assemblies
,”
Geotechnique
,
29
, p.
47
.
7.
Esser
,
R.
,
Grotendorst
,
P.
, and
Lewerenz
,
M.
, 2000,
Molecular Dynamics on Parallel Computers
,
World Scientific Publishing Co Pte Ltd
.
8.
Lucy
,
L. B.
, 1977,
Astron. J.
,
82
, p.
1013
.
10.
Hoover
,
W. G.
, 2006, “
Smooth Particle Applied Mechanics
,”
Advanced Series in Nonlinear Dynamics
, Vol.
25
,
World Scientific Publishing
,
Singapore
.
11.
Wang
,
G.
,
Cheng
,
A. H. D.
,
Ostoja-Starzewski
,
M.
,
Al-Ostaz
,
A.
, and
Radziszewski
,
P.
, 2010, “
Hybrid Lattice Particle Modelling Approach for Polymeric Materials Subject to High Strain Rate Loads
,”
Polymers
,
2
, p.
3
.
12.
Etzmuss
,
O.
,
Gross
,
J.
, and
Strasser
,
W.
, 2003,
IEEE Trans. Vis. Comput. Graph.
,
9
, p.
538
.
13.
Lloyd
,
B. A.
,
Szekely
,
G.
, and
Harders
,
M.
, 2007,
IEEE Trans. Vis. Comput. Graph.
,
13
, p.
1081
.
14.
Weinberger
,
H. F.
, 1995,
Partial Differential Equations
,
Dover
,
New York
.
15.
Antman
,
S. S.
, 1980, “
The Equations for Large Vibrations of String
,”
Am.Math. Monthly
,
87
, p.
359
.
16.
Edvardsson
,
S.
, and
Uesaka
,
T.
, 2010, “
System Dynamics of the Open-Draw With Web Adhesion: Particle Approach
,”
J. Appl. Mech.
,
77
, p.
021009
.
17.
York
,
R. A.
,
Sulsky
,
D.
, and
Schreyer
,
H. L.
, 2000, “
Fluid-Membrane Interaction Based on the Material Point Method
,”
Int. J. Numer. Methods. Eng.
,
48
, p.
901
.
18.
Nettel
,
S.
, 1995,
Wave Physics (Oscillations - Solitons - Chaos)
,
Springer-Verlag
,
Berlin
.
19.
Bilbao
,
S.
, 2005, “
Conservative Numerical Methods for Nonlinear Strings
,”
J. Acoust. Soc. Am.
,
118
, p.
3316
.
20.
Legge
,
K. A.
, and
Fletcher
,
N. H.
, 1984, “
Nonlinear Generation of Missing Modes on a Vibrating String
,”
J. Acoust. Soc. Am.
,
76
, p.
5
.
21.
Leimkuhler
,
B.
, and
Reich
,
S.
, 2004,
Simulating Hamiltonian Dynamics
,
Cambridge University
,
Cambridge, England
.
22.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
, 2006,
Geometric Numerical Integration
,
2nd ed.
,
Springer
,
New York
.
23.
Cromer
,
A.
, 1981, “
Stable Solutions Using the Euler Approximation
,”
Am. J. Phys.
,
49
, p.
455
.
25.
Björck
,
Å
, 1994, “
Numerics of Gram-Schmidt Orthogonalization
,”
Linear Algebra Appl.
,
197–198
, p.
297
.
26.
Goldstein
,
H.
, 1980,
Classical Mechanics
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
27.
Gulliksson
,
M.
,
Edvardsson
,
S.
, and
Lind
,
A.
, 2011, “
The Dynamical Functional Particle Method
,” BIT Numerical Mathematics, submitted.
29.
Martin
,
R. M.
, 2004,
Electronic Structure: Basic Theory and Practical Methods
,
University of Illinois
,
Urbana-Champaign
, pp.
54
55
.
30.
Edvardsson
,
S.
,
Aberg
,
D.
, and
Uddholm
,
P.
, 2005,
Comp. Phys. Commun.
,
165
, p.
260
.
34.
Loucks
,
T. L.
, 1967,
Augmented Plane Wave Method
,
W. A. Benjamin
,
New York
.
35.
LeVeque
,
R. J.
, 2007,
Finite Difference Methods for Ordinary and Partial Differential Equations
, SIAM, Philadelphia, PA, USA.
36.
Zhang
,
J.
, 2005, “
Sharp Threshold for Blowup and Global Existence in Nonlinear Schrödinger Equations Under a Harmonic Potential
,”
Commun. Partial Differential Equ.
,
30
, p.
1429
.
37.
Fetter
,
A. L.
, and
Feder
,
D. L.
, 1998,
Phys. Rev. A
,
58
, p.
3185
.
38.
Edwards
,
M.
, and
Burnett
,
K.
, 1995,
Phys. Rev. A
,
51
, p.
1382
.
39.
Goldman
,
S. P.
, 1995,
Phys. Rev. A
,
52
, p.
3718
.
You do not currently have access to this content.