A chemically responsive liquid crystal polymer network is experimentally characterized and compared to a nonlinear constitutive model and integrated into a finite element shell model. The constitutive model and large deformation shell model are used to understand water vapor induced bending. This class of materials is hygroscopic and can exhibit large bending as water vapor is absorbed into one side of the liquid crystal network (LCN) film. This gives rise to deflection away from the water vapor source which provides unique sensing and actuation characteristics for chemical and biomedical applications. The constitutive behavior is modeled by coupling chemical absorption with nonlinear continuum mechanics to predict how water vapor absorption affects bending deformation. In order to correlate the model with experiments, a micro-Newton measuring device was designed and tested to quantify bending forces generated by the LCN. Forces that range between 1 and 8 μN were measured as a function of the distance between the water vapor source and the LCN. The experiments and model comparisons provide important insight into linear and nonlinear chemically induced bending for a number of applications such as microfluidic chemical and biological sensors.

References

References
1.
Aβfalg
,
N.
, and
Finkelmann
,
H.
, 2001, “
A Smectic A Liquid Crystal Elastomer (LSCE): Phase Behavior and Mechanical Anisotropy
,”
Macromol. Chem. Phys.
,
202
, pp.
794
800
.
2.
Donnio
,
B.
,
Wermter
,
H.
, and
Finkelmann
,
H.
, 2000, “
A Simple and Versatile Synthetic Route for the Preparation of Main-Chain, Liquid Crystal Elastomers
,”
Macromolecules
,
33
, pp.
7724
7729
.
3.
Warner
,
M.
, and
Terentjev
,
E.
, 2007,
Liquid Crystal Elastomers–Revised Edition
,
Oxford Science Publications
,
Oxford
.
4.
van Oosten
,
C.
,
Harris
,
K.
,
Bastiaansen
,
C.
, and
Broer
,
D.
, 2007, “
Glassy Photomechanical Liquid-Crystal Network Actuators for Microscale Devices
,”
Eur. Phys. J. E
,
23
, pp.
329
336
.
5.
Urayama
,
K.
,
Kohmon
,
E.
,
Kojima
,
M.
, and
Takigawa
,
T.
, 2009, “
Polydomain-Monodomain Transition of Randomly Disordered Nematic Elastomers With Different Cross-Linking Histories
,”
Macromolecules
,
42
, pp.
4084
4089
.
6.
Harris
,
K.
,
Bastiaansen
,
C.
,
Lub
,
J.
, and
Broer
,
D.
, 2005, “
Self-Assembled Polymer Films for Controlled Agent-Driven Motion
,”
Nano Lett.
,
5
, pp.
1857
1860
.
7.
Harris
,
K.
,
Bastiaansen
,
C.
, and
Broer
,
D.
, 2006, “
A Glassy Bending Mode Polymeric Actuator Which Deforms in Response to Solvent Polarity
,”
Macromol. Rapid Commun.
,
27
, pp.
1323
1329
.
8.
Timoshenko
,
S.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
9.
Harris
,
K.
,
Bastiaansen
,
C.
, and
Broer
,
D.
, 2007, “
Physical Properties of Anisotropically Swelling Hydrogen-Bonded Liquid Crystal Polymer Actuators
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
480
488
.
10.
Bayindir
,
Z.
,
Sun
,
Y.
,
Naughton
,
M.
,
LaFratta
,
C.
,
Baldacchini
,
T.
,
Fourkas
,
J.
,
Stewart
,
J.
,
Saleh
,
B.
, and
Teich
,
M.
, 2005, “
Polymer Microcantilevers Fabcricated via Multiphoton Absorption Polymerization
,”
Appl. Phys. Lett.
,
86
, p.
064105
.
11.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 1960,
Transport Phenomena
,
John Wiley and Sons
,
New York
.
12.
de Gennes
,
P.
, and
Prost
,
J.
, 1993,
The Physics of Liquid Crystals
,
Oxford Science Publications
,
Oxford
.
13.
Oates
,
W.
,
Wang
,
H.
, and
Sierakowski
,
R.
, 2011, “
Unusual Field-Coupled Nonlinear Continuum Mechanics of Smart Materials
” J. Intell. Mater. Syst. Struct, (in press).
14.
Moore
,
W.
, 1972,
Physical Chemistry
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
15.
Lupis
,
C.
, 1983,
Chemical Thermodynamics of Materials
,
Englewood Cliffs
,
NJ.
16.
Govindjee
,
S.
, and
Simo
,
J.
, 1993, “
Coupled Stress-Diffusion: Case II
,”
J. Mech. Phys. Solids
,
41
(
5
), pp.
863
887
.
17.
Malvern
,
L.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
18.
Holzapfel
,
G.
, 2000,
Nonlinear Solid Mechanics
,
John Wiley & Sons, Inc.
,
Chichester
.
19.
Oates
,
W.
, and
Wang
,
H.
, 2009, “
A New Approach to Modeling Liquid Crystal Elastomers Using Phase Field Methods
,”
Modell. Simul. Mater. Sci. Eng.
,
17
, p.
064004
.
20.
Gurtin
,
M.
, 1996, “
Generalized Ginzburg-Landau and Cahn-Hilliard Equations Based on a Microforce Balance
,”
Physica D: Nonlinear Phenom.
,
92
(
3–4
), pp.
178
192
.
21.
Simo
,
J.
, and
Fox
,
D.
, 1989, “
On a Stress Resultant Geometrically Exact Shell Model. Part I: Formulation and Optimal Parameterization
,”
Comput. Methods Appl. Mech. Eng.
,
72
, pp.
267
304
.
22.
Simo
,
J.
,
Fox
,
D.
, and
Rifai
,
M.
, 1989, “
On a Stress Resultant Geometrically Exact Shell Model. Part II: The Linear Theory; Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
73
, pp.
53
92
.
23.
Taylor
,
R. L.
, 2010,
User Manual of FEAP—A Finite Element Analysis Program
,
University of California at Berkeley
.
24.
Simo
,
J.
,
Fox
,
D.
, and
Rifai
,
M.
, 1990, “
On a Stress Resultant Geometrically Exact Shell Model. Part III: Computational Aspects of the Nonlinear Theory
,”
Comput. Methods Appl. Mech. Eng.
,
79
, pp.
21
70
.
25.
Simo
,
J.
,
Rifai
,
M.
, and
Fox
,
D.
, 1992, “
On a Stress Resultant Geometrically Exact Shell Model. Part VI: Conserving Algrorithms for Non-Linear Dynamics
,”
Int. J. Numer. Methods Eng.
,
34
, pp.
117
164
.
You do not currently have access to this content.