Microtubules serve as one of the structural components of the cell and govern several important cellular functions including mitosis and vesicular transport. Microtubules are comprised of tubulin subunits formed by α and β tubulin dimers arranged in a cylindrical hollow tube with diameter ∼20 nm. The tube is typically comprised of 13 or 14 protofilaments extending axially and staggered to give a spiral configuration. The longitudinal bonds between the tubulin dimers are much stiffer and stronger than the lateral bonds. This gives a highly anisotropic structure and mechanical properties of the microtubule. In this work, the aim is to define a complete set of effective anisotropic elastic properties of the tube wall that capture the atomistic interactions. A seamless microtubule wall is represented as a two dimensional triangulated lattice of dimers from which a representative volume element is defined. A harmonic potential is adapted for the dimer–dimer interactions. Estimating the lattice elastic constants and following the methodology from the analysis of the mechanical behavior of the triangulated spectrin network of the red blood cell membrane (Arslan and Boyce, 2006, “Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure,” ASME J. Appl. Mech., 73, pp. 536–543), a general anisotropic hyperelastic strain energy function is formulated and used to define the effective anisotropic continuum level constitutive model of the mechanical behavior of the microtubule wall. In particular, the role of the anisotropic microstructure resulting from the different lattice bond lengths and bond stiffnesses is examined to explain nature’s optimization of microstructural orientation in providing a high axial stiffness combined with low shear stiffness.

References

References
1.
Lodish
,
H.
,
Matsudaira
,
P.
,
Berk
,
A.
,
Ploegh
,
H.
, and
Scott
,
M. P.
, 2007,
Molecular Cell Biology
,
6th ed.
,
W. H.
Freeman Company
,
New York
.
2.
Chretien
,
D.
,
Metoz
,
F.
,
Verde
,
F.
,
Karsenti
,
E.
, and
Wade
,
R. H.
, 1992, “
Lattice Defects in Microtubules: Protofilament Numbers Vary Within Individual Microtubules
,”
J. Cell Biol.
,
117
, pp.
1031
1040
.
3.
Song
,
Y. H.
, and
Mandelkow
,
E.
, 1993, “
Recombinant Kinesin Motor Domain Binds to Beta-Tubulin and Decorates Microtubules With a B-Surface Lattice
,”
Proc. Natl. Acad. Sci. U.S.A.
,
90
, pp.
1671
1675
.
4.
Chrétien
,
D.
, and
Wade
,
R. H.
, 1991, “
New Data on the Microtubule Surface Lattice
,”
Biol. Cell.
,
71
, pp.
161
174
.
5.
Nogales
,
E.
,
Wolf
,
S. G.
, and
Downing
,
K. H.
, 1998, “
Structure of the αβ Tubulin Dimer by Electron Crystallography
,”
Nature
,
391
, pp.
199
203
.
6.
Nogales
,
E.
,
Whittaker
,
M.
,
Milligan
,
R. A.
, and
Downing
,
K. H.
, 1999, “
High-Resolution Model of the Microtubule
,”
Cell
,
96
, pp.
79
88
.
7.
Li
,
H.
,
DeRosier
,
D. J.
,
Nicholson
,
W. V.
,
Nogales
,
E.
, and
Downing
,
K. H.
, 2002, “
Microtubule Structure at 8A° Resolution
,”
Structure
,
10
, pp.
1317
1328
.
8.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
, 1993, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
,
120
, pp.
923
934
.
9.
Venier
,
P.
,
Maggs
,
A. C.
,
Carlier
,
M. F.
, and
Pantaloni
,
D.
, 1994, “
Analysis of Microtubule Rigidity Using Hydrodynamic Flow and Thermal Fluctuations
,”
J. Biol. Chem.
,
269
, pp.
13353
13360
.
10.
Kurachi
,
M.
,
Hoshi
,
M.
, and
Tashiro
,
H.
, 1995, “
Buckling of a Single Microtubule by Optical Trapping Forces: Direct Measurement of Microtubule Rigidity
,”
Cell Motil. Cytoskeleton
,
30
, pp.
221
228
.
11.
Mickey
,
B.
, and
Howard
,
J.
, 1995, “
Rigidity of Microtubules is Increased by Stabilizing Agents
,”
J. Cell Biol.
,
130
, pp.
909
917
.
12.
Kis
,
A.
, 2003, “
Mechanical Properties of Mesoscopic Objects
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
13.
de Pablo
,
P. J.
,
Schaap
,
I. A. T.
,
MacKintosh
,
F. C.
, and
Schmidt
,
C. F.
, 2003, “
Deformation and Collapse of Microtubules on the Nanometer Scale
,”
Phys. Rev. Lett.
,
91
(
9
), pp.
91:098101
-1–098101-
4
.
14.
Arslan
,
M.
, and
Boyce
,
M. C.
, 2006, “
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
,”
ASME J. Appl. Mech.
,
73
, pp.
536
543
.
15.
Molodtsov
,
M. I.
,
Ermakova
,
E. A.
,
Shnol
,
E. E.
,
Grishchuk
,
E. L.
,
McIntosh
,
J. R.
, and
Ataullakhanov
,
F. I.
, 2005, “
A Molecular-Mechanical Model of the Microtubule
,”
Biophys. J.
,
88
(
5
), pp.
3167
3179
.
16.
Deriu
,
M. A.
,
Enemark
,
S.
,
Soncini
,
M.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2007, “
Tubulin: From Atomistic Structure to Supramolecular Mechanical Properties
,”
J. Mater. Sci.
,
42
, pp.
8864
8872
.
17.
Sept
,
D.
,
Baker
,
N. A.
, and
McCammon
,
J. A.
, 2003, “
The Physical Basis of Microtubule Structure and Stability
,”
Protein Sci.
,
12
, pp.
2257
2261
.
18.
Enemark
,
S.
,
Deriu
,
M. A.
,
Soncini
,
M.
, and
Redaelli
,
A.
, 2008, “
Mechanical Model of the Tubulin Dimer Based on Molecular Dynamics Simulations
,”
J. Biomech. Eng.,
130
, p.
041008
.
19.
Baker
,
N.
,
Sept
,
D.
,
Joseph
,
S.
,
Holst
,
M.
, and
McCammon
,
J. A.
, 2001, “
Electrostatics of Nanosystems. Application to Microtubules and the Ribosome
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
, pp.
10037
10041
.
20.
Kis
,
A.
,
Kasas
,
S.
,
Babic
,
B.
,
Kulik
,
A. J.
,
Benoît
,
W.
,
Briggs
,
G. A. D.
,
Schönenberger
,
C.
,
Catsicas
,
S.
, and
Forró
,
L.
, 2002, “
Nanomechanics of Microtubules
,”
Phys. Rev. Lett.
89
, p.
248101
.
21.
Arslan
,
M.
, 2010, “
Micromechanical Modeling of Microtubules
,” Ph.D. thesis, Ecole des Mines de Paris, Paris Tech, Paris, France.
22.
Mandelkow
,
E. M.
,
Mandelkow
,
E.
, and
Milligan
,
R. A.
, 1991, “
Microtubule Dynamics and Microtubule Caps: A Time-Resolved Cryo-Electron Microscopy Study
,”
J. Cell Biol.
,
114
, pp.
977
991
.
23.
Amos
,
L. A.
, and
Lowe
,
J.
, 1999, “
How Taxol Stabilises Microtubule Structure
,”
Chem. Biol.
,
6
,
R65
R69
.
You do not currently have access to this content.