We develop a residual-based variational multiscale (RBVMS) method based on isogeometric analysis for large-eddy simulation (LES) of wind-driven shear flow with Langmuir circulation (LC). Isogeometric analysis refers to our use of NURBS (Non-Uniform Rational B-splines) basis functions which have been proven to be highly accurate in LES of turbulent flows (Bazilevs, Y., et al. 2007, Comput. Methods Appl. Mech. Eng., 197, pp. 173–201). LC consists of stream-wise vortices in the direction of the wind acting as a secondary flow structure to the primary, mean component of the flow driven by the wind. LC results from surface wave-current interaction and often occurs within the upper ocean mixed layer over deep water and in coastal shelf regions under wind speeds greater than 3 m s−1. Our LES of wind-driven shallow water flow with LC is representative of a coastal shelf flow where LC extends to the bottom and interacts with the sea bed boundary layer. The governing LES equations are the Craik-Leivobich equations (Tejada-Martínez, A. E., and Grosch, C. E., 2007, J. Fluid Mech., 576, pp. 63–108; Gargett, A. E., 2004, Science, 306, pp. 1925–1928), consisting of the time-filtered Navier-Stokes equations. These equations possess the same structure as the Navier-Stokes equations with an extra vortex force term accounting for wave-current interaction giving rise to LC. The RBVMS method with quadratic NURBS is shown to possess good convergence characteristics in wind-driven flow with LC. Furthermore, the method yields LC structures in good agreement with those computed with the spectral method in (Thorpe, S. A., 2004, Annu. Rev. Fluids Mech., 36, pp. 584 55–79) and measured during field observations in (D’Alessio, S. J., et al., 1998, J. Phys. Oceanogr., 28, pp. 1624–1641; Kantha, L., and Clayson, C. A., 2004, Ocean Modelling, 6, pp. 101–124).

References

References
1.
Donelan
,
M. A.
, 1998, “
Air-Water Exchange Processes
,”
Physical Processes in Lakes and Oceans
,
J.
Imberger
, ed.,
Coastal and Estuarine Studies, American Geophysical Union
, pp.
19
36
.
2.
Langmuir
,
I.
, 1938, “
Surface Motion of Water Induced by Wind
,”
Science
,
87
, pp.
119
123
.
3.
Thorpe
,
S. A.
, 2004, “
Langmuir Circulation
,”
Annu. Rev. Fluids Mech.
,
36
, pp.
55
79
.
4.
Craik
,
A. D. D.
, and
Leibovich
,
S.
, 1976, “
A Rational Model for Langmuir Circulation
,”
J. Fluid Mech.
,
73
, pp.
401
426
.
5.
McWilliams
,
J. C.
,
Sullivan
,
P.
, and
Moeng
,
C.-H.
, 1997, “
Langmuir Turbulence in the Ocean
,”
J. Fluid Mech.
,
334
, pp.
31
58
.
6.
Sullivan
,
P. P.
, and
McWilliams
,
J. C.
, 2010, “
Dynamics of Winds and Currents Coupled to Surface Waves
,”
Annu. Rev. Fluids Mech.
,
42
, pp.
19
42
.
7.
Kantha
,
L.
,
Lass
,
H. U.
, and
Prandke
,
H.
, 2010, “
A Note on Stokes Production of Turbulence Kinetic Energy in the Oceanic Mixed Layer: Observations in the Baltic Sea
,”
Ocean Dyn.
,
60
, pp.
171
180
.
8.
Sullivan
,
P. P.
,
McWilliams
,
J. C.
, and
Melville
,
W. K.
, 2007, “
Surface Gravity Wave Effects in the Oceanic Boundary Layer: Large-Eddy Simulaion with Vortex Force and Stochastic Forcing
,”
J. Fluids Mech.
,
593
, pp.
405
452
.
9.
Tejada-Martínez
,
A. E.
, and
Grosch
,
C. E.
, 2007, “
Langmuir Turbulence in Shallow Water. Part 2. Large-Eddy Simulation
,”
J. Fluid Mech.
,
576
, pp.
63
108
.
10.
Skyllingstad
,
E. D.
, and
Denbo
,
D. W.
, 1995, “
A Ocean Large-Eddy Simulation of Langmuir Circulations and Convection in the Surface Mixed Layer
,”
J. Geophys. Res.
,
100
, pp.
501
522
.
11.
Li
,
M.
,
Garrett
,
C.
, and
Skyllingstad
,
E.
, 2005, “
A Regime Diagram for Classifying Turbulent Large Eddies in the Upper Ocean
,”
Deep-Sea Res.
,
52
, pp.
259
278
.
12.
D’Alessio
,
S. J.
,
Abdella
,
K.
, and
McFarlane
,
N. A.
, 1998, “
A New Second-Order Turbulence Closure Scheme for Modeling the Oceanic Mixed Layer
,”
J. Phys. Oceanogr.
,
28
, pp.
1624
1641
.
13.
Kantha
,
L.
, and
Clayson
,
C. A.
, 2004, “
On the Effect of Surface Gravity Waves on Mixing in the Oceanic Mixed Layer
,”
Ocean Modelling
,
6
, pp.
101
124
.
14.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
15.
Gargett
,
A. E.
,
Wells
,
J. R.
,
Tejada-Martínez
,
A. E.
, and
Grosch
,
C. E.
, 2004, “
Langmuir Supercells: A Mechanism for Sediment Resuspension and Transport in Shallow Seas
,”
Science
,
306
, pp.
1925
1928
.
16.
Gargett
,
A. E.
, and
Wells
,
J. R.
, 2007, “
Langmuir Turbulence in Shallow Water. Part 1. Observations
,”
J. Fluids Mech.
,
576
, pp.
27
61
.
17.
Polton
,
J. A.
,
Smith
,
J. A.
,
MacKinnon
,
J. A.
, and
Tejada-Martínez
,
A. E.
, 2008, “
Rapid Generation of High-Frequency Internal Waves Beneath a Wind and Wave Forced Oceanic Mixed Layer
,”
Geophys. Res. Lett.
,
35
, p.
L14602
.
18.
Kukulka
,
T.
,
Plueddeman
,
A.
,
Trowbridge
,
J.
, and
Sullivan
,
P. P.
, 2009, “
Significance of Langmuir Circulation in Upper Ocean Mixing: Comparison of Observations and Simulations
,”
Geophys. Res. Lett.
,
36
, p.
L10603
.
19.
Hughes
,
T.
,
Cottrell
,
J.
, and
Bazilevs
,
Y.
, 2005, “
Isogeometric Analysis: CAD, Finite Elements,NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4135
4195
.
20.
Bazilevs
,
Y.
,
Calo
,
V.
,
Cottrel
,
J.
,
Hughes
,
T.
,
Reali
,
A.
, and
Scovazzi
,
G.
, 2007, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
173
201
.
21.
Tejada-Martínez
,
A. E.
,
Grosch
,
C. E.
,
Gargett
,
A. E.
,
Polton
,
J. A.
,
Smith
,
J. A.
, and
MacKinnon
,
J. A.
, 2009, “
A Hybrid Spectral/Finite-Difference Large-Eddy Simulator of Processes in the Upper Ocean
,”
Ocean Modelling
,
39
, pp.
115
142
.
22.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T.
, and
Hulshoff
,
S.
, 2008, “
The Role of Continuity in Residual-Based Variational Multiscale Modeling of Turbulence
,”
Comput. Mech.
,
41
, pp.
371
378
.
23.
Bazilevs
,
Y.
, and
Hughes
,
T.
, 2007, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Computers and Fluids
,
36
, pp.
12
26
.
24.
Brooks
,
A.
and
Hughes
,
T.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
25.
Tezduyar
,
T.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
,
43
, pp.
555
575
.
26.
Hughes
,
T.
,
Scovazzi
,
G.
, and
Franca
,
L.
, 2004, “
Multiscale and Stabilized Methods
,”
Encyclopedia of Computational Mechanics
, Vol. 3, Computational Fluid Dynamics,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
,
New York
, Chap. 2.
27.
Hughes
,
T.
, and
Mallet
,
M.
, 1986, “
A New Finite Element Formulation for Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems
,”
Comput. Methods Appl. Mech. Eng.
,
58
, pp.
305
328
.
28.
Hughes
,
T.
,
Franca
,
L.
, and
Mallet
,
M.
, 1987, “
A New Finite Element Formulation for Fluid Dynamics: VI. Convergence Analysis of the Generalized SUPG Formulation for Linear Time-Dependent Multidimensional Advective-Diffusive Systems
,”
Comput. Methods Appl. Mech. Eng.
,
63
, pp.
97
112
.
29.
Shakib
,
F.
,
Hughes
,
T.
, and
Johan
,
Z.
, 1991, “
A New Finite Element Formulation for Computational Fluid Dynamics: X. The Compressible Euler and Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
89
, pp.
141
219
.
30.
Johnson
,
C.
, 1987,
Numerical Solution of Partial Differential Equations by the Finite Element Method
,
Cambridge University Press
,
London
.
31.
Denman
,
E.
, and
Beavers
,
A.
, 1976, “
The Matrix Sign Function and Computations in Systems
,”
Appl. Math. Comput.
,
2
, pp.
63
94
.
32.
Bazilevs
,
Y.
, and
Akkerman
,
I.
, 2010, “
Large Eddy Simulation of Turbulent Taylor-Couette Flow Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method
,”
J. Comp. Phys.
229
(
9
), pp.
3402
3414
.
33.
Tezduyar
,
T.
, and
Osawa
,
Y.
, 2000, “
Finite Element Stabilization Parameters Computed from Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
411
430
.
34.
Hsu
,
M.
,
Bazilevs
,
Y.
,
Calo
,
V.
,
Tezduyar
,
T.
, and
Hughes
,
T.
, 2010, “
Improving Stability of Multiscale Formulations of Fluid Flow at Small Time Steps
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
828
8240
.
35.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V.
, and
Hughes
,
T.
, 2007, “
Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
4853
4862
.
36.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V.
, and
Hughes
,
T.
, 2010, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows with Weakly-Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
780
790
.
37.
Phillips
,
O. M.
, 1966,
The Dynamics of the Upper Ocean
,
Cambridge University Press
,
Cambridge
.
38.
LeBlond
,
P. H.
, and
Mysak
,
L. A.
, 1977,
Waves in the Ocean
,
Elsevier
,
New York.
39.
Harcourt
,
R. R.
, and
D’Asaro
,
E. A.
, 2008, “
Large Eddy Simulation of Langmuir Turbulene in Pure Wind Seas
,”
J. Phys. Oceanogr.
,
38
, pp.
1542
1562
.
40.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α method
,”
J. Appl. Mech.
,
60
, pp.
371
75
.
41.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
, 1999, “
A Generalized-α Method for Integrating the Filtered Navier-Stokes Equations with a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
305
319
.
This content is only available via PDF.
You do not currently have access to this content.