This paper presents our approach for the computation of free-surface/rigid-body interaction phenomena with emphasis on ship hydrodynamics. We adopt the level set approach to capture the free-surface. The rigid body is described using six-degree-of-freedom equations of motion. An interface-tracking method is used to handle the interface between the moving rigid body and the fluid domain. An Arbitrary Lagrangian–Eulerian version of the residual-based variational multiscale formulation for the Navier–Stokes and level set equations is employed in order to accommodate the fluid domain motion. The free-surface/rigid body problem is formulated and solved in a fully coupled fashion. The numerical results illustrate the accuracy and robustness of the proposed approach.

References

References
1.
Takizawa
,
K.
,
Tanizawa
,
K.
,
Yabe
,
T.
, and
Tezduyar
,
T.
, 2007, “
Ship Hydrodynamics Computations With the CIP Method Based on Adaptive Soroban Grids
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
1011
1019
.
2.
Tezduyar
,
T.
,
Aliabadi
,
S.
, and
Behr
,
M.
, 1998, “
Enhanced-Discretization Interface-Capturing Technique (EDICT) for Computation of Unsteady Flows With Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
155
, pp.
235
248
.
3.
Sethian
,
J.
, 1999,
Level Set Methods and Fast Marching Methods
,
Cambridge University Press
,
London
.
4.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
114
, pp.
146
159
.
5.
Nagrath
,
S.
,
Jansen
,
K.
, and
Lahey
,
R.
, 2005, “
Computation of Incompressible Bubble Dynamics With a Stabilized Finite Element Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4565
4587
.
6.
Olsson
,
E.
, and
Kreiss
,
G.
, 2005, “
A Conservative Level Set Method for Two Phase Flow
,”
J. Comput. Phys.
,
210
, pp.
225
246
.
7.
Tezduyar
,
T.
, 2001,“
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
,
8
, pp.
83
130
.
8.
Akin
,
J.
,
Tezduyar
,
T.
, and
Ungor
,
M.
, 2007, “
Computation of Flow Problems With the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT)
,”
Comput. Fluids
,
36
, pp.
2
11
.
9.
Tezduyar
,
T.
,
Behr
,
M.
, and
Liou
,
J.
, 1992, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
339
351
.
10.
Tezduyar
,
T.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
, 1992, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: II. Computation of Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
353
371
.
11.
Cruchaga
,
M.
,
Celentano
,
D.
, and
Tezduyar
,
T.
, 2007, “
A Numerical Model Based on the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for Flows With Fluid-Solid and Fluid-Fluid Interfaces
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
1021
1031
.
12.
Cruchaga
,
M.
,
Celentano
,
D.
, and
Tezduyar
,
T.
, 2001, “
A Moving Lagrangian Interface Technique for Flow Computations Over Fixed Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
525
543
.
13.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
, 1981, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
, pp.
329
349
.
14.
Kees
,
C.
,
Akkerman
,
I.
,
Farthing
,
M.
, and
Bazilevs
,
Y.
, 2011, “
A Conservative Level Set Method Suitable for Variable-Order Approximations and Unstructured Meshes
,”
J. Comput. Phys.
,
230
, pp.
4536
4558
.
15.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Kees
,
C.
, and
Farthing
,
M.
, 2011, “
Isogeometric Analysis of Free-Surface Flow
,”
J. Comput. Phys.
,
230
, pp.
4137
4152
.
16.
Kleefsman
,
K.
,
Fekken
,
G.
,
Veldman
,
A.
,
Iwanowski
,
B.
, and
Buchner
,
B.
, 2005, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
, pp.
363
393
.
17.
Elias
,
R.
, and
Coutinho
,
A.
, 2007, “
Stabilized Edge-Based Finite Element Simulation of Free-Surface Flows
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
965
993
.
18.
Lins
,
E. F.
,
Elias
,
R. N.
,
Rochinha
,
F. A.
, and
Coutinho
,
A. L. G. A.
, 2010, “
Residual-Based Variational Multiscale Simulation of Free Surface Flows
,”
Comput. Mech.
,
46
, pp.
545
557
.
19.
Bazilevs
,
Y.
,
Calo
,
V.
,
Cottrel
,
J.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
, 2007, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
173
201
.
20.
Bazilevs
,
Y.
,
Calo
,
V.
,
Zhang
,
Y.
, and
Hughes
,
T. J. R.
, 2006, “
Isogeometric Fluid-Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
, pp.
310
322
.
21.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T. J. R.
, and
Hulshoff
,
S.
, 2008, “
The Role of Continuity in Residual-Based Variational Multiscale Modeling of Turbulence
,”
Comput. Mech.
,
41
, pp.
371
378
.
22.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V.
, and
Hughes
,
T. J. R.
, 2007, “
Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
4853
4862
.
23.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V.
, and
Hughes
,
T. J. R.
, 2010, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly-Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
13–16
), pp.
780
790
.
24.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T. J. R.
,
Moser
,
R.
, and
Zhang
,
Y.
, 2009, “
Patient-Specific Isogeometric Fluid-Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3534
3550
.
25.
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
, 2008, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
, pp.
3
37
.
26.
Hsu
,
M.
,
Bazilevs
,
Y.
,
Calo
,
V.
,
Tezduyar
,
T.
, and
Hughes
,
T. J. R.
, 2010, “
Improving Stability of Multiscale Formulations of Fluid Flow at Small Time Steps
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
828
840
.
27.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T.
, 2011, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
207
235
.
28.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wuechner
,
R.
, and
Bletzinger
,
K.-U.
, 2011, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid-Structure Interaction
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
236
253
.
29.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
, 2007, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluids
,
36
, pp.
12
26
.
30.
Brooks
,
A.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
31.
Harari
,
I.
, and
Hughes
,
T. J. R.
, 1992, “
What are C and h?: Inequalities for the Analysis and Design of Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
97
, pp.
157
192
.
32.
Tezduyar
,
T.
, 2004, “
Finite Element Methods for Fluid Dynamics With Moving Boundaries and Interfaces
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R. D.
Borst
, and
T. J. R.
Hughes
, eds., Vol.
3
: Fluids,
John Wiley & Sons
,
New York.
33.
Tezduyar
,
T.
, and
Senga
,
M.
, 2006, “
Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1621
1632
.
34.
Galeao
,
A.
, and
do Carmo
,
E. D.
, 1988, “
A Consistent Approximate Upwind Petrov–Galerkin Method for Convection-Dominated Problems
,”
Comput. Methods Appl. Mech. Eng.
,
68
(
1
), pp.
83
95
.
35.
Rispoli
,
F.
,
Corsini
,
A.
, and
Tezduyar
,
T.
, 2007, “
Finite Element Computation of Turbulent Flows With the Discontinuity-Capturing Directional Dissipation (DCDD)
,”
Comput. Fluids
,
36
, pp.
121
126
.
36.
Tezduyar
,
T.
,
Ramakrishnan
,
S.
, and
Sathe
,
S.
, 2008, “
Stabilized Formulations for Incompressible Flows With Thermal Coupling
,”
Int. J. Numer. Methods Fluids
,
57
, pp.
1189
1209
.
37.
Tezduyar
,
T.
, and
Osawa
,
Y.
, 2000, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
411
430
.
38.
Tezduyar
,
T.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
,
43
, pp.
555
575
.
39.
John
,
V.
, and
Knobloch
,
P.
, 2007, “
On Spurious Oscillations at Layers Diminishing (Sold) Methods for Convection-Diffusion Equations: Part I—A review
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
17–20
), pp.
2197
2215
.
40.
Stein
,
K.
,
Tezduyar
,
T.
, and
Benney
,
R.
, 2003, “
Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements
,”
J. App. Mech.
,
70
, pp.
58
63
.
41.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
J. App. Mech.
,
60
, pp.
371
375
.
42.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
, 1999, “
A Generalized-α Method for Integrating the Filtered Navier--Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
305
319
.
43.
Saad
,
Y.
, and
Schultz
,
M.
, 1986, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Non-Symmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
7
, pp.
856
869
.
44.
Hughes
,
T. J. R.
, and
Winget
,
J.
, 1980, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis
,”
Int. J. Numer. Methods Eng.
,
15
, pp.
1862
1867
.
45.
Longo
,
J.
, and
Stern
,
F.
, 2005,
“Uncertainty Assessment for Towing Tank Tests With Example for Surface Combatant DTMB Model 5415
,”
J. Ship Res.
,
49
, pp.
55
68
.
46.
Garcia
,
J.
, and
Oñate
,
E.
, 2003, “
An Unstructured Finite Element Solver for Ship Hydrodynamics Problems
,”
J. App. Mech.
,
70
, pp.
18
26
.
47.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
, and
Stern
,
F.
, 2007, “
Phase-Averaged PIV for the Nominal Wake of a Surface Ship in Regular Head Waves
,”
J. Fluids Eng.
,
129
, pp.
524
541
.
48.
McCormick
,
M.
, 2010,
Ocean Engineering Mechanics. With Applications
,
Cambridge University Press
, London.
49.
Bazilevs
,
Y.
, and
Akkerman
,
I.
, 2010, “
Large Eddy Simulation of Turbulent Taylor–Couette Flow Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method
,”
J.Comput. Phys.
,
229
(
9
), pp.
3402
3414
.
You do not currently have access to this content.