We present the special space-time computational techniques we have introduced recently for computation of flow problems with moving and deforming solid surfaces. The techniques have been designed in the context of the deforming-spatial-domain/stabilized space-time formulation, which was developed by the Team for Advanced Flow Simulation and Modeling for computation of flow problems with moving boundaries and interfaces. The special space-time techniques are based on using, in the space-time flow computations, non-uniform rational B-splines (NURBS) basis functions for the temporal representation of the motion and deformation of the solid surfaces and also for the motion and deformation of the volume meshes computed. This provides a better temporal representation of the solid surfaces and a more effective way of handling the volume-mesh motion. We apply these techniques to computation of the aerodynamics of flapping wings, specifically locust wings, where the prescribed motion and deformation of the wings are based on digital data extracted from the videos of the locust in a wind tunnel. We report results from the preliminary computations.

References

References
1.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
, 1981, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
29
, pp.
329
349
.
2.
Tezduyar
,
T. E.
, 1992, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
pp.
1
44
.
3.
Tezduyar
,
T. E.
,
Behr
,
M.
, and
Liou
,
J.
, 1992, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests
,”
Comput. Methods Appl. Mech. Eng.
94
, pp.
339
351
.
4.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
, 1992, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: II. Computation of Free-Surface Flows, Two-Liquid Flows, and Flows with Drifting Cylinders
,”
Comput. Methods Appl. Mech. Eng.
94
, pp.
353
371
.
5.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
, 1993, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
,
26
, pp.
27
36
.
6.
Behr
,
M.
,
Johnson
,
A.
,
Kennedy
,
J.
,
Mittal
,
S.
, and
Tezduyar
,
T.
, 1993, “
Computation of Incompressible Flows with Implicit Finite Element Implementations on the Connection Machine
,”
Comput. Methods Appl. Mech. Eng.
108
, pp.
99
118
.
7.
Mittal
,
S.
, and
Tezduyar
,
T. E
, 1995, “
Parallel Finite Element Simulation of 3D Incompressible Flows - Fluid-Structure Interactions
Int. J. Numer. Methods Fluids
21
, pp.
933
953
.
8.
Aliabadi
,
S. K.
, and
Tezduyar
,
T. E.
, 1995,“
Parallel Fluid Dynamics Computations in Aerospace Applications
,”
Int. J. Numer. Methods Fluids
,
21
, pp.
783
805
.
9.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1999, “
Advanced Mesh Generation and Update Methods for 3D Flow Simulations
,”
Comput. Mech.
,
23
pp.
130
143
.
10.
Behr
,
M.
, and
Tezduyar
,
T.
, 1999, “
The Shear-Slip Mesh Update Method
,”
Comput. Methods Appl. Mech. Eng.
,
174
, pp.
261
274
.
11.
Kalro
,
V.
, and
Tezduyar
,
T. E.
, 2000, “
A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems
,
’ Comput. Methods Appl. Mech. Eng.
190
, pp.
321
332
.
12.
Tezduyar
,
T.
, and
Osawa
,
Y.
, 2001, “
Fluid-Structure Interactions of a Parachute Crossing the Far Wake of an Aircraft
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
717
726
.
13.
Stein
,
K.
,
Benney
,
R.
,
Tezduyar
,
T.
, and
Potvin
,
J.
, 2001, “
Fluid-Structure Interactions of a Cross Parachute: Numerical Simulation
,”
Comput. Methods Appl. Mech. Eng.
191
. pp.
673
687
.
14.
Ohayon
,
R.
, 2001, “
Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3009
3019
.
15.
Tezduyar
,
T. E.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
Int. J. Numer. Methods Fluids
43
, pp.
555
575
.
16.
van Brummelen
,
E. H.
, and
de Borst
,
R.
, 2005,“
On the Nonnormality of Subiteration for a Fluid-Structure Interaction Problem
,”
SIAM J. Sci. Comput. (USA)
27
, pp.
599
621
.
17.
Tezduyar
,
T. E.
,
Sathe
,
S.
, and
Stein
,
K.
, 2006, “
Solution Techniques for the Fully-Discretized Equations in Computation of Fluid-Structure Interactions with the Space-Time Formulations
,”
Comput. Methods Appl. Mech. Eng.
195
, pp.
5743
5753
.
18.
Torri
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2006, “
Computer Modeling of Cardiovascular Fluid-Structure Interactions with the Deforming-Spatial-Domain/Stabilized Space-Time Formulation
,”
Comput. Methods Appl. Mech. Eng.
195
, pp.
1885
1895
.
19.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2006, “
Fluid-Structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures
,”
Comput. Mech.
38
, pp.
482
490
.
20.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Zhang
,
Y.
, and
Hughes
,
T. J. R.
, 2006,“
Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
, pp.
310
322
.
21.
Khurram
,
R. A.
, and
Masud
,
A.
, 2006, “
A Multiscale/Stabilized Formulation of the Incompressible Navier-Stokes Equations for Moving Boundary Flows and Fluid-Structure Interaction
,”
Comput. Mech.
38
, pp.
403
416
.
22.
Tezduyar
,
T. E.
, 2007, “
Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces
,”
Comput. Fluids
,
36
, pp.
191
206
.
23.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Cragin
,
T.
,
Nanna
,
B.
,
Conklin
,
B. S.
,
Pausewang
,
J.
, and
Schwaab
,
M.
, 2007, “
Modeling of Fluid-Structure Interactions with the Space-Time Finite Elements: Arterial Fluid Mechanics
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
901
922
.
24.
Sawada
,
T.
, and
Hisada
,
T.
, 2007, “
Fluid-Structure Interaction Analysis of the Two Dimensional Flag-in-Wind Problem by an Interface Tracking ALE Finite Element Method
,”
Comput. Fluids
,
36
, pp.
136
146
.
25.
Tezduyar
,
T. E.
, and
Sathe
,
S.
, 2007, “
Modeling of Fluid-Structure Interactions with the Space-Time Finite Elements: Solution Techniques
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
855
900
.
26.
Takizawa
,
K.
,
Yabe
,
T.
,
Tsugawa
,
Y.
,
Tezduyar
,
T. E.
, and
Mizoe
,
H.
, 2007, “
Computation of Free-Surface Flows and Fluid-Object Interactions with the CIP Method Based on Adaptive Meshless Soroban Grids
,”
Comput. Mech.
,
40
, pp.
167
183
.
27.
Takizawa
,
K.
,
Tanizawa
,
K.
,
Yabe
,
T.
, and
Tezduyar
,
T. E.
, 2007, “
Ship Hydrodynamics Computations with the CIP Method Based on Adaptive Soroban Grids
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
1011
1019
.
28.
Yabe
,
T.
,
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Im
,
H.-N.
, 2007, “
Computation of Fluid-Solid and Fluid-Fluid Interfaces with the CIP Method Based on Adaptive Soroban Grids - An Overview
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
841
853
.
29.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2007, “
Numerical Investigation of the Effect of Hypertensive Blood Pressure on Cerebral Aneurysm - Dependence of the Effect on the Aneurysm Shape
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
995
1009
.
30.
Manguoglu
,
M.
,
Sameh
,
A. H.
,
Tezduyar
,
T. E.
, and
Sathe
,
S.
, 2008, “
A Nested Iterative Scheme for Computation of Incompressible Flows in Long Domains
,”
Comput. Mech.
,
43
, pp.
73
80
.
31.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
,
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Interface Projection Techniques for Fluid-Structure Interaction Modeling with Moving-Mesh Methods
,”
Comput. Mech.
,
43
, pp.
39
49
.
32.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
,
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Fluid-Structure Interaction Modeling of Ringsail Parachutes
,”
Comput. Mech.
,
43
, pp.
133
142
.
33.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B. S.
, 2008, “
Arterial Fluid Mechanics Modeling with the Stabilized Space-Time Fluid-Structure Interaction Technique
,”
Int. J. Numer. Methods Fluids
,
57
, pp.
601
629
.
34.
Sathe
,
S.
and
Tezduyar
,
T. E.
, 2008, “
Modeling of Fluid-Structure Interactions with the Space-Time Finite Elements: Contact Problems
,”
Comput. Mech.
,
43
, pp.
51
60
.
35.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2008, “
Fluid-Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling
,”
Comput. Mech.
,
43
, pp.
151
159
.
36.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. R. J.
, and
Zhang
,
Y.
, 2008,“
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
, pp.
3
37
.
37.
Isaksen
,
J. G.
,
Bazilevs
,
Y.
,
Kvamsdal
,
T.
,
Zhang
,
Y.
,
Kaspersen
,
J. H.
,
Waterloo
,
K.
,
Romner
,
B.
and
Ingebrigtsen
,
T.
, 2008,“
Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation
,”
Stroke
,
39
, pp.
3172
3178
.
38.
Dettmer
,
W. G.
, and
Peric
,
D.
, 2008, “
On the Coupling Between Fluid Flow and Mesh Motion in the Modelling of Fluid-Structure Interaction
,”
Comput. Mech.
,
43
, pp.
81
90
.
39.
Tezduyar
,
T. E.
,
Schwaab
,
M.
, and
Sathe
,
S.
, 2009, “
Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) Technique
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3524
3533
.
40.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
T.E.
Tezduyar
, 2009, “
Fluid-Structure Interaction Modeling of Blood Flow and Cerebral Aneurysm: Significance of Artery and Aneurysm Shapes
,”
Comput. Methods Appl. Mech. Eng.
198
, pp.
3613
3621
.
41.
Bazilevs
,
Y.
,
Gohean
,
J. R.
,
Hughes
,
T. J. R.
,
Moser
,
R. D.
, and
Zhang
,
Y.
, 2009,“
Patient-Specific Isogeometric Fluid-Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3534
3550
.
42.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Benson
,
D.
,
Sankaran
,
S.
, and
Marsden
,
A.
, 2009, “
Computational Fluid-Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
, pp.
77
89
.
43.
Takizawa
,
K.
,
Christopher
,
J.
,
Tezduyar
,
T. E.
, and
Sathe
,
S.
, 2010, “
Space-Time Finite Element Computation of Arterial Fluid-Structure Interactions with Patient-Specific Data
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
, pp.
101
116
.
44.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Christopher
,
J.
, and
Tezduyar
,
T. E.
, 2010, “
Wall Shear Stress Calculations in Space-Time Finite Element Computation of Arterial Fluid-Structure Interactions
,”
Comput. Mech.
,
46
, pp.
31
41
.
45.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
, and
Christopher
,
J.
, 2010, “
Multiscale Sequentially-Coupled Arterial FSI Technique
,”
Comput. Mech.
,
46
, pp.
17
29
.
46.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2010, “
Influence of Wall Thickness on Fluid-Structure Interaction Computations of Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
, pp.
336
347
.
47.
Manguoglu
,
M.
,
Takizawa
,
K.
,
Sameh
,
A. H.
, and
Tezduyar
,
T. E.
, 2010, “
Solution of Linear Systems in Arterial Fluid Mechanics Computations with Boundary Layer Mesh Refinement
,”
Comput. Mech.
,
46
, pp.
83
89
.
48.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2010, “
Role of 0D Peripheral Vasculature Model in Fluid-Structure Interaction Modeling of Aneurysms
,”
Comput. Mech.
,
46
, pp.
43
52
.
49.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J.
, 2010, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
, pp.
3
16
.
50.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
, and
Christopher
,
J.
, 2010, “
Space-Time Finite Element Computation of Complex Fluid-Structure Interactions
,”
Int. J. Numer. Methods Fluids
,
64
, pp.
1201
1218
.
51.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Kvamsdal
,
T.
,
Hentschel
,
S.
, and
Isaksen
,
J.
, 2010, “
Computational Fluid-Structure Interaction: Methods and Application to Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
,
9
, pp.
481
498
.
52.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
, 2011, “
Fluid-Structure Interaction Modeling and Performance Analysis of the Orion Spacecraft Parachutes
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
271
285
.
53.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Purdue
,
J.
,
McPhail
,
T.
,
Chen
,
P. R.
,
Warren
,
J.
, and
Tezduyar
,
T. E.
, 2011, “
Patient-Specific Arterial Fluid-Structure Interaction Modeling of Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
308
323
.
54.
Takizawa
,
K.
,
Wright
,
S.
,
Moorman
,
C.
, and
Tezduyar
,
T. E.
, 2011, “
Fluid-Structure Interaction Modeling of Parachute Clusters
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
286
307
.
55.
Manguoglu
,
M.
,
Takizawa
,
K.
,
Sameh
,
A. H.
, and
Tezduyar
,
T. E.
, 2011, “
Nested and Parallel Sparse Algorithms for Arterial Fluid Mechanics Computations with Boundary Layer Mesh Refinement
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
135
149
.
56.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Brummer
,
T.
, and
Chen
,
P. R.
, 2011, “
Space-Time Fluid-Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms
,”
Int. J. Numer. Biomed. Eng., (published online, DOI: 10.1002/cnm.1433).
57.
Takizawa
K.
, and
Tezduyar
,
T. E.
, 2011, “
Multiscale Space-Time Fluid-Structure Interaction Techniques
,”
Comput. Mech.
,
48
, pp.
247
267
.
58.
Takizawa
,
K.
,
Henicke
,
B.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
, 2011, “
Stabilized Space-Time Computation of Wind-Turbine Rotor Aerodynamics
,”
Comput. Mech.
,
48
, pp.
333
344
.
59.
Takizawa
,
K.
Spielman
,
T.
,
Tezduyar
,
T. E.
, 2011, “
Space-Time FSI Modeling and Dynamical Analysis of Spacecraft Parachutes and Parachute Clusters
,”
Comput. Mech.
,
48
, pp.
345
364
.
60.
Brooks
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
61.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
, 1992, “
Incompressible Flow Computations with Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
221
242
.
62.
Wu
,
T. Y.
, 2011, “
Fish Swimming and Bird/Insect Flight
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
25
58
.
63.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
, 2005, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
194
, pp.
4135
4195
.
64.
Bazilevs
Y.
, and
Hughes
,
T. J. R.
, 2008, “
NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components
,”
Comput. Mech.
,
43
, pp.
143
150
.
65.
Bazilevs
Y.
, and
Akkerman
,
I.
, 2010, “
Large Eddy Simulation of Turbulent Taylor-Couette Flow Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method
,”
J. Comput. Phys.
,
229
, pp.
3402
3414
.
You do not currently have access to this content.