Traditionally, programming of shape memory polymer (SMP) material requires initial heating above the glass transition temperature (Tg), subsequent cooling below Tg and removal of the applied load. Therefore, the shape fixity process is inconvenient for some applications. Most recently, a new and effective approach, which programs glass transition activated SMPs directly at temperatures well below Tg,was introduced by Li and Xu [2011, “Thermomechanical Behavior of Shape Memory Polymer Programmed at Glassy Temperature: Testing and Constitutive Modeling,” J. Mech. Phys. Solids, 59(6), pp. 1231–1250. The 1D compression programming below Tg and free shape recovery were extensively investigated both experimentally and analytically. The current work extends this study into a shape memory polymer based self-healing syntactic foam, which was found to be capable of self-sealing structural scale damage repeatedly, efficiently, and almost autonomously [Li and John, 2008, “A Self-Healing Smart Syntactic Foam Under Multiple Impacts,” Compos. Sci. Technol., 68(15–16), pp. 3337–3343.]. A structural-relaxation constitutive model featuring damage-allowable thermoviscoplasticity was then developed to predict the nonlinear shape memory behavior of the SMP based syntactic foam programmed at glassy temperatures. After validated by both 1D (compression) and 2D (compression in longitudinal direction and tension in transverse direction) tests, the constitutive model was used to evaluate the effects of several design parameters on the thermomechanical behavior of the SMP based syntactic foam. It is concluded that the model is a useful tool for designing and training this novel self-healing composite.

References

References
1.
Li
,
G.
, and
John
,
M.
, 2008, “
A Self-Healing Smart Syntactic Foam Under Multiple Impacts
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3337
3343
.
2.
Lendlein
,
A.S.
,
Kelch
,
S.
,
Kratz
,
K.
, and
Schulte
J.
, 2005, “
Shape-Memory Polymers
,”
Encyclopedia of Materials
,
Elsevier
,
Amsterdam
, pp.
1
9
.
3.
Behl
,
M.
and
Lendlein
,
A.
, 2007, “
Shape-Memory Polymers
,
Mater. Today
,
10
(
4
), pp.
20
28
.
4.
Anderson
,
T. F.
,
Walters
,
H. A.
, and
Glesner
,
C.W.
, 1970, “
Castable, Sprayable, Low Density Foam and Composites for Furniture, Marble, Marine
,”
J. Cell. Plast.
,
6
, pp.
171
178
.
5.
Gupta
,
N.
, and
Woldesenbet
,
E.
, 2005, “
Characterization of Flexural Properties of Syntactic Foam Core Sandwich Composites and Effect of Density Variation
,”
J. Compos. Mater.
,
39
, pp.
2197
2212
.
6.
Li
,
G.
, and
Nettles
,
D.
, 2010, “
Thermomechanical Characterization of a Shape Memory Polymer Based Self-Repairing Syntactic Foam
,”
Polymer
,
51
(
3
), pp.
755
762
.
7.
Li
,
G.
, and
Uppu
,
N.
, 2010, “
Shape Memory Polymer Based Self-Healing Syntactic Foam: 3-D Confined Thermomechanical Characterization
,”
Comp. Sci. Technol.
40
(
9
), pp.
1419
1427
.
8.
Nji
,
J.
, and
Li
,
G.
, 2010, “
A Biomimic Shape Memory Polymer Based Self-Healing Particulate Composite
,”
Polymer
,
51
, pp.
6021
6029
.
9.
Nji
,
J.
, and
Li
,
G.
, 2010, “
A Self-Healing 3D Woven Fabric Reinforced Shape Memory Polymer Composite for Impact Mitigation
,”
Smart Mater. Struct.
,
19
(
3
), p.
035007
.
10.
John
,
M.
, and
Li
,
G.
, 2010, “
Self-Healing of Sandwich Structures with a Grid Stiffened Shape Memory Polymer Syntactic Foam Core
,”
Smart Mater. Struct.
,
19
(
7
), p.
075013
.
11.
Li
,
G.
, and
Xu
,
W.
, 2011,
“Thermomechanical Behavior of Shape Memory Polymer Programmed at Glassy Temperature: Testing and Constitutive Modeling
,”
J. Mech. Phys. Solids
59
(
6
), pp.
1231
1250
.
12.
Tobushi
,
H.
,
Hara
,
H.
,
Yamada
,
E.
, and
Hayashi
,
S.
, 1996, “
Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series
,”
Smart Mater. Struct.
,
5
(
4
), pp.
483
491
.
13.
Tobushi
,
H.
Hashimoto
,
T.
Hayashi
,
S.
, and
Yamada
,
E.
, 1997, “
Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series
,”
J. Intell. Mater. Syst. Struct.
,
8
, pp.
711
718
.
14.
Bhattacharyya
,
A.
, and
Tobushi
,
H.
, 2000, “
Analysis of the Isothermal Mechanical Response of a Shape Memory Polymer Rheological Model
,”
Polym. Eng. Sci.
,
40
(
12
), pp.
2498
2510
.
15.
Kafka
,
V.
, 2001,
Mesomechanical Constitutive Modeling
,
World Scientific
,
Singapore
.
16.
Kafka
,
V.
, 2008, “
Shape Memory Polymers: A Mesoscale Model of the Internal Mechanism Leading to the SM Phenomena
,”
Int. J. Plast.
,
24
, pp.
1533
1548
.
17.
Diani
,
J.
, and
Gall
,
K.
, 2007, “
Molecular Dynamics Simulations of The Shape–Memory Behaviour of Polyisoprene
,”
Smart Mater. Struct.
,
16
, pp.
1575
1583
.
18.
Morshedian
,
J.
,
Khonakdar
,
H. A.
, and
Rasouli
,
S.
, 2005, “
Modeling of Shape Memory Induction and Recovery in Heatshrinkable Polymer
,”
Macromol. Theory Simul.
,
14
, pp.
428
434
.
19.
Gall
,
K.
,
Yakacki
,
C. M.
,
Liu
,
Y.
,
Shandas
,
R.
,
Willett
,
N.
, and
Anseth
,
K.S.
, 2005, “
Thermomechanics of the Shape Memory Effect in Polymers for Biomedical Applications
,”
J. Biomed. Mater. Res. A
,
73
, pp.
339
348
.
20.
Liu
,
Y.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
, 2006, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plast.
,
22
, pp.
279
313
.
21.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Lanning
,
C.
,
Rech
,
B.
,
Eckstein
,
A.
, and
Gall
K.
, 2007, “
Unconstrained Recovery Characterization of Shape- Memory Polymer Networks for Cardiovascular Applications
,”
Biomaterials
28
(
14
), pp.
2255
2263
.
22.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
, 2008, “
Finite Deformation Thermo–Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
, pp.
1730
1751
.
23.
Chen
,
Y. H.
, and
Lagoudas
,
D.C.
, 2008, “
A Constitutive Theory For Shape Memory Polymers. Part I-Large Deformations
,”
J. Mech. Phys. Solids
,
56
, pp.
1752
1765
.
24.
Chen
,
Y. H.
, and
Lagoudas
,
D.C.
, 2008, “
A Constitutive Theory for Shape Memory Polymers. Part II- A Linearized Model for Small Deformations
,”
J. Mech. Phys. Solids
,
56
, pp.
1766
1778
.
25.
Xu
,
W.
, and
Li
,
G.
, 2010, “
Constitutive Modeling of Shape Memory Polymer Based Self-Healing Syntactic Foam
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1306
1316
.
26.
Nguyen
,
T. D.
,
Qi
,
H.
,
Castro
,
F.
, and
Long
,
K.N.
, 2008, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
56
(
9
), pp.
2792
2814
.
27.
Li
,
G.
, and
Xu
,
T.
, 2011,
“Thermomechanical Characterization of Shape Memory Polymer Based Self-Healing Syntactic Foam Sealant for Expansion Joint,”
ASCE J. Mater. Civ. Eng.
, (Available on-line March 23, 2011), doi:10.1061/(ASCE)TE.1943-5436.0000279.
28.
ASTM Standard C365, 2003, “Standard Test Method for Flatwise Compressive Properties of Sandwich Cores,” ASTM International, West Conshohocken, PA, 2003, www.astm.org.
29.
ASTM Standard E1640-04, 2004, “Standard Test Method for Assignment of Glass Transition,” ASTM International, West Conshohocken, PA, 2004, www.astm.org.
30.
Li
,
G.
, and
Nji
,
J.
, 2007, “
Development of Rubberized Syntactic Foam
,”
Composites Part A
,
38
, pp.
1483
1492
.
31.
Berriot
,
J.
,
Montes
,
H.
,
Lequeux
,
F.
,
Long
,
D.
, and
Sotta
,
P.
, 2002, “
Evidence for The Shift of the Glass Transition Near the Particles in Silica-Filled Elastomers
,”
Macromolecules
,
35
(
26
), pp.
9756
9762
.
32.
Berriot
,
J.
,
Montes
,
H.
,
Lequeux
,
F.
,
Long
,
D.
,
Sotta
,
P.
, 2003, “
Gradient of Glass Transition Temperature in Filled Elastomers
,”
Europhys. Lett.
,
64
(
1
), pp.
50
56
.
33.
Oliver
,
J. P.
,
Maso
,
J. C.
, and
Bourdette
,
B.
, 1995, “
Interfacial Transition Zone In Concrete
,”
J. Adv. Cem. Based Mater.
,
2
(
1
), pp.
30
38
.
34.
Li
,
G.
,
Zhao
,
Y.
, and
Pang
S.S.
, 1998, “
A Three-Layer Built-In Analytical Modeling of Concrete
,”
Cem. Concr. Res.
,
28
, pp.
1057
1070
.
35.
Li
,
G.
,
Zhao
,
Y.
, and
Pang
S.S.
, 1999, “
Four-Phase Sphere Modeling of Effective Bulk Modulus of Concrete
,”
Cem. Concr. Res.
,
29
, pp.
839
845
.
36.
Lu
,
S. C. H.
, and
Pister
,
K.S.
, 1975, “
Decomposition of Deformation and Representation of the Free Energy Function for Isotropic Thermoelastic Solids
,”
Int. J. Solids Struct.
,
11
, pp.
927
934
.
37.
Lion
,
A.
, 1997, “
On the Large Deformation Behavior of Reinforced Rubber at Different Temperatures
,”
J. Mech. Phys. Solids
,
45
, pp.
1805
1834
.
38.
Sidoroff
,
F.
, 1974, “
Un Modèle Viscoélastique Non Linéaire Avec Configuration Intermédiare
,”
J. Mec.
,
13
, pp.
679
713
.
39.
Tool
,
A.Q.
, 1946, “
Relation Between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range
,”
J. Am. Ceram. Soc.
,
29
(
9
), pp.
240
253
.
40.
Narayanaswamy
,
O.S.
, 1971, “
A Model of Structural Relaxation in Glass
,”
J. Am. Ceram. Soc.
,
54
(
10
), pp.
491
498
.
41.
Moynihan
,
C.T.
,
Easteal
,
A.E.
,
Debolt
,
M.A.
, and
Tucker
,
J.
, 1976,
J. Am. Ceram. Soc.
,
59
, pp.
12
16
.
42.
Donth
,
E.
, and
Hempel
,
E.
, 2002, “
Structural Relaxation Above the Glass Temperature: Pulse Response Simulation with the Narayanaswamy Moynihan Model for Glass Transition
,”
J. Non-Cryst. Solids
,
306
, pp.
76
89
.
43.
Kohlrausch
,
F.
, 1847,
Pogg. Ann. Phys.
,
12
, pp.
393
399
.
44.
DeBolt
,
M. A.
,
Easteal
,
A. J.
,
Macedo
,
P. B.
, and
Moyhinan
,
CT.
, 1976, “
Analysis of Structural Relaxation in Glass Using Rate Heating Data
,”
J. Am. Ceram. Soc.
,
59
(
1–2
), pp.
16
21
.
45.
Donth
E.
, 1982, “
Analysis of Thermoluminescence Curves of Polymers Using Current Methods of Relaxation Phenomenology
,”
Polym. Bull.
,
8
, pp.
211
217
.
46.
Hempel
,
E.
,
Kahle
,
S.
,
Unger
,
R.
,
Donth
,
E.
, 1999, “
Systematic Calorimetric Study of Glass Transition in the Homologous Series of Poly(n-Alkyl Methacrylate)s: Narayanaswamy Parameters in the Crossover Region
,”
Thermochim. Acta
,
329
, pp.
97
108
.
47.
William
,
M. L.
,
Landel
,
R. F.
, and
Ferry
J.D.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
, pp.
3701
3707
.
48.
Scherer
,
G.W.
, 1990, “
Theories of Relaxation
,”
J. Non-Cryst. Solids
,
123
, pp.
75
89
.
49.
Treloar
,
L.R.G.
, 1958,
The Physics of Rubber Elasticity
,
Clarendon
,
Oxford
.
50.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A.S.
, 1988, “
Large Inelastic Deformation of Glassy-Polymers. 1: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.
51.
Boyce
,
M. C.
,
Park
,
D. M.
, and
Argon
,
A.S.
, 1988, “
Large Inelastic Deformation of Glassy-Polymers. 2: Numerical-Simulation of Hydrostatic Extrusion
,”
Mech. Mater.
,
7
(
1
), pp.
35
47
.
52.
Boyce
,
M. C.
,
Weber
,
G. G.
, and
Parks
,
D.M.
, 1989, “
On the Kinematics of Finite Strain Plasticity
,”
J. Mech. Phys. Solids
,
37
(
5
), pp.
647
665
.
53.
Govindjee
,
S.
, and
Simo
,
J.
, 1991, “
A Micro-Mechanically Based Continuum Damage Model for Carbon Black-Filled Rubbers Incorporating Mullins Effect
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
87
112
.
54.
Arruda
,
E. M.
, and
Boyce
,
M.C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
, pp.
389
412
.
55.
Miehe
,
C.
, and
Keck
,
J.
, 2000, “
Superimposed Finite Elastic-Viscoelastic-Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling And Algorithmic Implementation
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
323
365
.
56.
Bergstrom
,
J. S.
, and
Boyce
,
M.C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependence Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
57.
Govindjee
,
S.
, and
Reese
,
S.
, 1997, “
A Presentation and Comparison of Two Large Deformation Viscoelasticity Models
,”
Trans. ASME J. Eng. Mater. Technol.
,
119
, pp.
251
255
.
58.
Boyce
,
M. C.
,
Kear
,
K.
,
Socrate
,
S.
, and
Shaw
,
K.
, 2001, “
Deformation Of Thermoplastic Vulcanizates
,”
J. Mech. Phys. Solids
,
49
(
5
), pp.
1073
1098
.
59.
Qi
,
H. J.
, and
Boyce
,
M.C.
, 2005, “
Stress-Strain Behavior Of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.
60.
Flory
,
P.J.
, 1961, “
Thermodynamic Relations for Highly Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.
61.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K.S.
, 1985, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
, pp.
177
208
.
62.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Comput. Phys.
,
28
, pp.
373
383
.
63.
Li
,
H. X.
, and
Buckley
,
C.P.
, 2010, “
Necking in Glassy Polymers: Effects of Intrinsic Anisotropy and Structural Evolution Kinetics in Their Viscoplastic Flow
,”
Int. J. Plast.
,
26
, pp.
1726
1745
.
You do not currently have access to this content.