Presented are the experimental results of two light activated shape memory polymer (LASMP) formulations. The optical stimulus used to activate the materials is detailed including a mapping of the spatial optical intensity at the surface of the sample. From this, results of energy calculations are presented including the amount of energy available for transitioning from the glassy state to the rubbery state and from the rubbery state to the glassy state, highlighting one of the major advantages of LASMP as requiring less energy to transition than thermally activated shape memory polymers. The mechano-optical experimental setup and procedure is detailed and provides a consistent method for evaluating this relatively new class of shape memory polymer. A chemical kinetic model is used to predict both the theoretical glassy state modulus, as only the sample averaged modulus is experimentally attainable, as well as the through thickness distribution of Young’s modulus. The experimental and model results for these second generation LASMP formulations are then compared with earlier LASMP generations (detailed previously in Beblo and Mauck Weiland, 2009, “Light Activated Shape Memory Polymer Characterization,” ASME J. Appl. Mech., 76, pp. 8) and typical thermally activated shape memory polymer.

References

1.
Wei
,
Z. G.
,
Sandstrom
,
R.
, and
Miyazaki
,
S.
, 1998, “
Review: Shape-memory materials and Hybrid Composites for Smart Systems
,”
J. Mater. Sci.
,
33
, pp.
3743
3762
.
2.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 2001, “
A Study of Strain-Induced Crystallization of Polymers
,”
Int. J. Solids Struct.
,
38
, pp.
1149
167
.
3.
Poilane
,
C.
,
Delobelle
,
P.
,
Lexcellent
,
C.
,
Hayashi
,
S.
, and
Tobushi
,
H.
, 2000, “
Analysis of the Mechanical Behavior of Shape Memory Polymer Membranes by Nanoindentation, Bulging and Point Membrane Deflection Tests
,”
Thin Solid Films
,
379
, pp.
156
165
.
4.
Bonner
,
M.
,
Saunders
,
L. S.
,
Ward
,
I. M.
,
Davies
,
G. W.
,
Wang
,
M.
,
Tanner
,
K. E.
, and
Bonfield
,
W.
, 2002, “
Anisotropic Mechanical Properties of Oriented HAPEXTM
,”
J. Mater. Sci.
,
37
, pp.
325
334
.
5.
Lendlein
,
A.
, and
Langer
,
R.
, 2002, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
,
296
, pp.
1673
1676
.
6.
Bar-Cohen
,
Y.
, 2002, “
Electro-Active Polymers: Current Capabilities and Challenges
,”
Proceedings of SPIE NDE and Smart Structures Conference
, 17–19 March,
San Diego, CA
, No. 4695-02-05.
7.
Paquette
,
J. W.
, and
Kim
,
K. J.
, 2004, “
Ionomeric Electroactive Polymer Artificial Muscle for Naval Applications
,”
IEEE J. Ocean. Eng.
,
29
(
3
), pp.
729
737
.
8.
Bar-Cohen
,
Y.
,
Xue
,
T.
,
Shahinpoor
,
M.
,
Simpson
,
J. O.
, and
Smith
,
J.
, 1998, “
Low-Mass Muscle Actuators Using Electroactive Polymers (EAP)
,”
Proceedings of SPIE’s 5th Annual International Symposium on Smart Structures and Materials
, 1-5 March,
San Diego, CA
, No. 3324-32.
9.
Matthews
,
J. L.
,
Lada
,
E. K.
,
Weiland
,
L. M.
,
Smith
,
R. C.
, and
Leo
,
D. J.
, 2006, “
Monte Carlo Simulation of a Solvated Ionic Polymer With Cluster Morphology
,”
Smart Mater. Struct.
,
15
, pp.
187
199
.
10.
Finkelmann
,
H.
,
Nishikawa
,
E.
,
Pereira
,
G. G.
, and
Warner
,
M.
, 2001, “
A New Opto-Mechanical Effect in Solids
,”
Phys. Rev. Lett.
,
87
(
1
), pp.
1
4
.
11.
Ikeda
,
T.
,
Nakano
,
M.
,
Yu
,
Y.
,
Tsutsumi
,
O.
, and
Kanazawa
,
A.
, 2003, “
Anisotropic Bending and Unbending Behavior of Azobenzene Liquid-Crystalline Gels by Light Exposure
,”
Adv. Mater.
,
15
(
3
), pp.
201
205
.
12.
Racz
,
L. M.
,
Li
,
L.
, and
Abedian
,
B.
, 1998, “
Cure Kinetics of Light Activated Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
36
, pp.
2887
2894
.
13.
Yu
,
Y.
,
Nakano
,
M.
, and
Ikeda
,
T.
, 2003, “
Direct Bending of a Polymer Film by Light
,”
Nature
,
425
, pp.
145
.
14.
Tong
,
T.
, and
Snyder
,
E.
, 2007, “
Light Activated Shape Memory Co-Polymers
,”
World Intellectual Property Organization
, WO/2007/001407.
15.
Lendlein
,
A.
,
Jiang
,
H.
,
Junger
,
O.
, and
Langer
,
R.
, 2005, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
, pp.
879
882
.
16.
Li
,
M. -H
,.,
Keller
,
P.
,
Li
,
B.
,
Want
,
X.
, and
Brunet
,
M.
, 2003, “
Light-Driven Side-On Nematic Elastomer Actuators
,”
Adv. Mater.
,
15
(
7–8
), pp.
569
572
.
17.
Suzuki
,
A.
, and
Tanaka
,
T.
, 1990, “
Phase Transition in Polymer Gels Induced by Visible Light
,”
Nature
,
346
, pp.
345
347
.
18.
Ichihashi
,
T.
,
Kawai
,
W.
,
Naraoka
,
T.
, and
Asanu
,
T.
, 1984, “
Photosensitive High Polymer, Easily Insolubilized When Cross-Linked by Light, a Method for Preparation Therof, and a Composition Thereof
,” U.S. Patent No. 4,
560
,
640
.
19.
Borchardt
,
J. K.
, 2005, “
Shape-Memory Polymers See the Light
,”
Mater. Today
,
8
(
6
), pp.
000
000
.
20.
Snyder
,
E.
, and
Tong
,
T. H.
, 2005, “
Towards Novel Light-Activated Shape Memory Polymer: Thermomechanical Properties of Photo-responsive Polymers
,”
Mater. Res. Soc. Symp. Proc.
,
872
, pp.
J18.6.1
6
.
21.
Babic
,
D.
,
Souverain
,
D. M.
,
Stannett
,
V. T.
,
Squire
,
D. R.
,
Hagnauer
,
G. L.
, and
Singler
,
R. E.
, 1986, “
The Radiation Crosslinking and Scission of Some Polyphosphanes
,”
Int. J. Radiat. Appl. Instrum. C
,
28
(
2
), pp.
169
172
.
22.
Babic
,
D.
, and
Stannett
,
V. T.
, 1987, “
Theoretical Considerations of Scission and Endlinking Reactions in Irradiated Polymers
,”
Int. J. Radiat. Appl. Instrum. C
,
30
(
3
), pp.
183
187
.
23.
Mamada
,
A.
,
Tanaka
,
T.
,
Kungwatchakun
,
D.
, and
Irie
,
M.
, 1990, “
Photoinduced Phase Transitions of Gels
,”
Macromolecules
,
23
, pp.
1517
1519
.
24.
Jiang
,
H.
,
Kelch
,
S.
, and
Lendlein
,
A.
, 2006, “
Polymers Move in Response to Light
,”
Adv. Mater.
,
18
, pp.
1471
1475
.
25.
Behl
,
M.
, and
Lendlein
,
A.
, 2007, “
Actively Moving Polymers
,”
R. Soc. Chem. Soft Matter
,
3
, pp.
58
67
.
26.
Jiang
,
J.
,
Qi
,
B.
,
Lepage
,
M.
, and
Zhao
,
Y.
, 2007, “
Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking
,”
Macromolecules
,
40
, pp.
790
792
.
27.
Andrady
,
A. L.
,
Hamid
,
S. H.
,
Hu
,
X.
, and
Torikai
,
A.
, 1998, “
Effects of Increased Solar Ultraviolet Radiation on Materials
,”
J. Photochem. Photobiol., B
46
, pp.
96
103
.
28.
Alexander
,
P.
,
Black
,
M.
, and
Charlesby
,
A.
, 1955, “
Radiation Induced Changes in the Structure of Polyisobutylene
,”
Proc. R. Soc. London, Ser. A
,
232
(
1188
), pp.
31
48
.
29.
Seguchi
,
T.
,
Arakawa
,
K.
,
Hayadawa
,
N.
, and
Machi
,
S.
, 1981, “
Radiation Induced Oxidative Degradation of Polymers. IV. Dose Rate Effects on Chemical and Mechanical Properties
,”
Radiat. Phys. Chem.
,
18
(
3–4
), pp.
671
678
.
30.
Wilski
,
H.
, 1987, “
The Radiation Induced Degradation of Polymers
,”
Radiat. Phys. Chem.
,
29
(
1
), pp.
1
14
.
31.
Behl
,
M.
, and
Lendlein
,
A.
, 2007, “
Shape-Memory Polymers
,”
Mater. Today
,
10
(
4
), pp.
20
28
.
32.
Beblo
,
R.
, and
Mauck Weiland
,
L.
, 2009, “
Light Activated Shape Memory Polymer Characterization
,”
ASME J. Appl. Mech.
,
76
(
8
), pp.
000
000
.
33.
Lee
,
B. S.
,
Chun
,
B. C.
,
Chung
,
Y. C.
,
Sul
,
K. I.
, and
Cho
,
J. W.
, 2001, “
Structure and Thermomechanical Properties of Polyurethane Block Copolymers With Shape Memory Effect
,”
Macromolecules
,
34
, pp.
6431
6437
.
34.
Beblo
,
R.
, and
Mauck Weiland
,
L.
, 2008, “
Strain Induced Anisotropic Properties of Shape Memory Polymer
,”
J. Smart Mater. Struct.
,
17
, pp.
7
.
You do not currently have access to this content.