Free and forced vibration analyses of functionally graded hollow cylinders and spheres are performed and analytical benchmark solutions are presented. The material is assumed to be graded in the radial direction according to a simple power law. The Laplace transform method is used, and the inversion into the time domain is performed exactly using calculus of residues. The Complex Laplace parameter in the free vibration equation has directly given natural frequencies, and the results are given in tabular form. On the inner surface, various axisymmetric dynamic pressures are applied, and radial displacement and hoop stress are presented in the form of graphs. The exponent in the power law, called the inhomogeneity parameter, essentially refers to the degree of inhomogeneity. Increasing the inhomogeneity parameter provides a stress-shielding effect. Closed-form solutions obtained in the present paper are tractable, and they allow for further parametric studies. The inhomogeneity constant is a useful parameter from a design point of view in that it can be tailored for specific applications to control the stress distribution.

References

References
1.
Tranter
,
C. J.
, 1942, “
The Applications of the Laplace Transformation to a Problem on Elastic Vibrations
,”
Philos. Mag.
,
33
, pp.
614
622
.
2.
Mirsky
,
I.
, 1964, “
Axisymmetric Vibrations of Orthotropic Cylinders
,”
J. Acoust. Soc. Am.
,
36
(
11
), pp.
2106
2112
.
3.
Klosner
,
J. M.
, and
Dym
,
C. L.
, 1965, “
Axisymmetric, Plane-Strain Dynamic Response of a Thick Orthotropic Shell
,”
J. Acoust. Soc. Am.
,
39
(
1
), pp.
1
7
.
4.
Ahmed
,
N.
, 1965, “
Axisymmetric Plane-Strain Vibrations of a Thick-Layered Orthotropic Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
40
(
6
), pp.
1509
1516
.
5.
Ghosh
,
A. K.
, 1995, “
Axisymmetric Vibration of a Long Cylinder
,”
J. Sound Vib.
,
186
(
5
), pp.
711
721
.
6.
Tarn
,
J. Q.
, 2001, “
Exact Solutions for Functionally Graded Anisotropic Cylinders Subjected to Thermal and Mechanical Loads
,”
Int. J. Solids Struct.
,
38
(
46–47
), pp.
8189
8206
.
7.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
,
5
(
7
), pp.
753
770
.
8.
Horgan
,
C. O.
, and
Chan
,
A. M.
, 1999, “
The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials
,”
J. Elasticity
,
55
(
1
), pp.
43
59
.
9.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M. R.
, 2002, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
493
497
.
10.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M. R.
, 2003, “
General Solution for Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Nonaxisymmetric Steady-State Loads
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
111
118
.
11.
Shao
,
Z. S.
, 2005, “
Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder with Finite Length
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
155
163
.
12.
Dai
,
H. L.
,
Fu
,
Y. M.
, and
Dong
,
Z. M.
, 2006, “
Exact Solutions for Functionally Graded Pressure Vessels in a Uniform Magnetic Field
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
5570
5580
.
13.
Jabbari
,
M.
,
Bahtui
,
A.
, and
Eslami
,
M. R.
, 2006, “
Axisymmetric Mechanical and Thermal Stresses in Thick Long FGM Cylinders
,”
J. Therm. Stresses
,
29
(
7
), pp.
643
663
.
14.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J. Mech. Sci.
,
41
(
3
), pp.
309
324
.
15.
Pradhan
,
S. C.
,
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 2000, “
Vibration Characteristics of Functionally Graded Cylindrical Shells Under Various Boundary Vonditions
,”
Appl. Acoust.
,
61
(
1
), pp.
111
129
.
16.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
, 2003, “
3D Vibration Analysis of Solid and Hollow Cylinders via Chebyshev-Ritz Method
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
13–14
), pp.
1575
1589
.
17.
Han
,
X.
,
Liu
,
G. R.
,
Xi
,
Z. C.
, and
Lam
,
K. Y.
, 2001, “
Transient Waves in a Functionally Graded Cylinder
,”
Int. J. Solids Struct.
,
38
(
17
), pp.
3021
3037
.
18.
Ng
,
T. Y.
,
Lam
,
K. Y.
,
Liew
,
K. M.
, and
Reddy
,
J. N.
, 2001, “
Dynamic Stability Analysis of Functionally Graded Cylindrical Shells Under Periodic Axial Loading
,”
Int. J. Solids Struct.
,
38
(
8
), pp.
1295
1309
.
19.
Shakeri
,
M.
,
Akhlaghi
,
M.
, and
Hoseini
,
S. M.
, 2006, “
Vibration and Radial Wave Propagation Velocity in Functionally Graded Thick Hollow Cylinder
,”
Compos. Struct.
,
76
(
1–2
), pp.
174
181
.
20.
Nelson
,
R. B.
, 1973, “
Natural Vibrations of Laminated Orthotropic Spheres
,”
Int. J. Solids Struct.
,
9
(
3
), pp.
305
311
.
21.
Gautham
,
P.
, and
Ganesan
,
N.
, 1992, “
Axisymmetric Vibration of Layered Orthotropic Spherical Shells of Variable Thickness
,”
Comput. Struct.
,
45
(
5–6
), pp.
893
900
.
22.
Jiang
,
H.
,
Young
,
P. G.
, and
Dickinson
,
S. M.
, 1996, “
Natural Frequencies of Vibration of Layered Hollow Spheres Using Exact Three-Dimensional Elastic Equations
,”
J. Sound Vib.
,
195
(
1
), pp.
155
162
.
23.
Heyliger
,
P. R.
, and
Jilani
,
A.
, 1992, “
The Free Vibrations of Inhomogeneous Elastic Cylinders and Spheres
,”
Int. J. Solids Struct.
,
29
(
22
), pp.
2689
2708
.
24.
Chen
,
W. Q.
, 1999, “
Effect of Radial Inhomogeneity on Natural Frequencies of an Anisotropic Hollow Sphere
,”
J. Sound Vib.
,
226
(
4
), pp.
787
794
.
25.
Chen
,
W. Q.
,
Wang
,
X.
, and
Ding
,
H. J.
, 1999, “
Free Vibration of a Fluid-Filled Hollow Sphere of a Functionally Graded Material with Spherical Isotropy
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2588
2594
.
26.
Chen
,
W. Q.
,
Wang
,
L. Z.
, and
Lu
,
Y.
, 2002, “
Free Vibrations of Functionally Graded Piezoceramic Hollow Spheres with Radial Polarization
,”
J. Sound Vib.
,
251
(
1
), pp.
103
114
.
27.
Chiroiu
,
V.
, and
Munteanu
,
L.
, 2007, “
On the Free Vibrations of a Piezoceramic Hollow Sphere
,”
Mech. Res. Commun.
,
34
(
2
), pp.
123
129
.
28.
Sheehan
,
J. P.
, and
Debnath
L.
, 1972, “
Transient Vibrations of an Isotropic Elastic Sphere
,”
Pure Appl. Geophys.
,
99
(
1
), pp.
37
48
.
29.
Ghosh
,
A. K.
, and
Agrawal
,
M. K.
, 1994, “
Radial Vibrations of Spheres
,”
J. Sound Vib.
,
171
(
3
), pp.
315
322
.
30.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2002, “
Analytical Thermo-Elastodaynamic Solutions for a Nonhomogeneous Transversely Isotropic Hollow Sphere
,”
Arch. Appl. Mech.
,
72
(
8
), pp.
545
553
.
31.
Chen
,
W. Q.
,
Lu
,
Y.
,
Ye
,
G. R.
, and
Cai
,
J. B.
, 2002, “
3D Electroelastic Field in a Functionally Graded Piezoceramic Hollow Sphere Under Mechanical and Electric Loadings
,”
Arch. Appl. Mech.
,
72
(
1
), pp.
39
51
.
32.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2003, “
Dynamic Responses of a Functionally Graded Pyroelectric Hollow Sphere for Spherically Symmetric Problems
,”
Int. J. Mech. Sci.
,
45
(
6–7
), pp.
1029
1051
.
33.
Wang
,
H. M.
, and
Ding
,
H. J.
, 2006, “
Spherically Symmetric Transient Responses of Functionally Graded Magneto-Electro-Elastic Hollow Sphere
,”
Struct. Engin. Mech.
,
23
(
5
), pp.
525
542
.
34.
Dai
,
H. L.
, and
Fu
,
Y. M.
, 2007, “
Magnetothermoelastic Interactions in Hollow Structures of Functionally Graded Material Subjected to Mechanical Loads
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
132
138
.
35.
Manolis
,
G. D.
, and
Beskos
,
D. E.
, 1981, “
Dynamic Stress Concentration Studies by Boundary Integrals and Laplace Transform
,”
Int. J. Numer. Methods Eng.
,
17
(
4
), pp.
573
599
.
36.
Watson
,
G. N.
, 1996,
A Treatise on the Theory of Bessel Functions
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.