Glass impact experiments were designed at three different scales—0.22-cal, 0.375-cal, and 0.50-cal—named after the diameter of the bullets. Four experimental series were conducted at the three scale sizes: (1) Lexan®-only experiments; (2) monoblock glass experiments; (3) single impact bonded glass experiments, and (4) multi-hit experiments. The experiments were conducted to obtain residual velocity Vr as a function of impact (striking) velocity Vs, including sufficient partial penetrations to calculate a ballistic limit velocity V50. The Vs – Vr data were fit to the Lambert equation to obtain another estimate of V50. The objective of the experiments was to investigate whether a time dependency exists in glass damage/failure for ballistic experiments, and if so, quantify this dependence. No scale effect was observed in experimental results for the Lexan®-only experiments. But a variety of scale effects were observed in the glass impact experiments, suggesting that failure is time dependent within the timeframe of ballistic events.

References

1.
Behner
,
T.
,
Anderson
,
C. E.
Jr.
,
Orphal
,
D. L.
,
Hohler
,
V.
,
Moll
,
M.
, and
Templeton
,
D. W.
, 2005, “
The Failure Kinetics of High Density DEDF Glass Against Rod Impact at Velocities From 0.4 to 2.5 km/s
,”
Proc. 22nd Int. Symp. Ballistics
,
DES Tech Publications, Inc.
,
Lancaster, PA
, pp.
877
887
.
2.
Orphal
,
D. L.
,
Behner
,
T
,
Hohler
,
V
,
Anderson
,
C. E.
Jr.
, and
Templeton
,
D. W.
, 2006, “
Failure Wave in DEDF and Soda-Lime Glass During Rod Impact
,”
AIP Conf. Proc.
845
, pp.
1391
1394
.
3.
Orphal
,
D. L.
,
Anderson
,
C. E.
Jr.
,
Behner
,
T
,
Hohler
,
V
,
Wickert
,
M
, and
Templeton
,
D. W.
, 2007, “
Failure Kinetics in Borosilicate Glass During Rod Impact
,”
AIP Conf. Proc.
955
, pp.
759
762
.
4.
Orphal
,
D. L.
, 2009, “
Some Recent Results on the Propagation of the Failure Front Associated With Rod Penetration of Borosilicate Glass
,”
AIP Conf. Proc.
1195
, pp.
1425
1430
.
5.
Behner
,
T.
,
Anderson
,
C. E.
Jr.
,
Orphal
,
D. L.
,
Hohler
,
V.
,
Moll
,
M.
, and
Templeton
,
D. W.
, 2008, “
Penetration and Failure of Lead and Borosilicate Glass Against Rod Impact
,”
Int. J. Impact Eng.
35
(
6
) pp.
447
456
.
6.
Anderson
,
C. E.
Jr.
,
Orphal
,
D. L.
,
Behner
,
T.
, and
Templeton
,
D. W.
, 2009, “
Failure and Penetration Response of Borosilicate Glass During Short-Rod Impact
,”
Int. J. Impact Eng.
36
(
6
), pp.
789
798
.
7.
Orphal
,
D. L.
,
Anderson
,
C. E.
Jr.
,
Behner
,
T.
, and
Templeton
,
D. W.
, 2009, “
Failure and Penetration Response of Borosilicate Glass During Multiple Short-Rod Impact
,”
Int. J. Impact Eng.
36
(
10)-(11
), pp.
1173
1181
.
8.
Anderson
,
C. E.
Jr.
,
Holmquist
,
T. J.
,
Orphal
,
D. L.
, and
Behner
T.
, 2010, “
Dwell and Interface Defeat on Glass Targets
,”
Int. J. Appl. Ceram. Technol.
7
(
6
), pp.
776
786
.
9.
Strassburger
,
E.
and
Senf
,
H.
, 1995, “
Experimental Investigations of Wave and Fracture Phenomena in Impacted Ceramics and Glasses
,” Army Research Laboratory, Report No. ARL-CR–214.
10.
Strassburger
,
E.
,
Patel
,
P.
,
McCauley
,
J. W.
, and
Templeton
,
D. W.
, 2005, “
High-Speed Photographic Study of Wave and Fracture Propagation in Fused Silica
,”
Proc. 22nd Int. Symp. Ballistics
,
DEStech Publications, Inc.
,
Lancaster, PA
, pp.
761
768
.
11.
Grady
,
D. E.
, 2008, Presentation at TARDEC Glass Workshop, Detroit, MI, 7–8 May.
12.
Tuler
,
F. R.
and
Butcher
,
B. M.
, 1968, “
A Criterion for the Time Dependency of Dynamic Fracture
,”
Int. J. Fract. Mech.
,
4
(
4
), pp.
431
437
.
13.
Anderson
,
C. E.
Jr.
,
Mullin
,
S. A.
, and
Kuhlman
,
C. J.
, 1993, “
Computer Simulation of Strain-Rate Effects in Replica Scale Model Penetration Experiments
,”
Int. J. Impact Eng.
,
13
(
1
), pp.
35
52
.
14.
Anderson
,
C. E.
Jr.
,
Mullin
,
S. A.
,
Piekutowski
,
A. J.
,
Blaylock
,
N. W.
, and
Poormon
,
K. L.
, 1996, “
Scale Model Experiments With Ceramic Laminate Targets
,”
Int. J. Impact Eng.
,
18
(
1
), pp.
1
22
.
15.
Wereszczak
,
A. A.
,
Kirtland
,
T. P.
,
Ragan
,
M. E.
,
Strong
,
K. T.
Jr.
, and
Patel
,
P.
, 2010, “
Size-Scaling of Tensile Failure Stress in a Float-Soda-Lime-Silicate Glass
,”
Int. J. Appl. Glass Sci.
,
1
(
2
), pp.
143
150
.
16.
Chocron
,
S.
,
Anderson
,
C. E.
Jr.
,
Nicholls
,
A. E.
, and
Dannemann
,
K. A.
, 2010, “
Characterization of Confined Intact and Damaged Borosilicate Glass
,”
J. Am Ceram. Soc.
93
(
10
), pp.
3390
3398
.
17.
Curran
,
D. R.
,
Seaman
,
L.
, and
Shockey
,
D. A.
, “
Dynamic Failure of Solids
,”
Phys. Rep., Phys Lett.
145
(
5
), pp.
253
388
.
18.
Alexander
,
C. S.
,
Chhabildas
,
L. C.
,
Reinhart
,
W. D.
, and
Templeton
,
D. W.
, 2008, “
Changes to the Shock Response of Fused Quartz due to Glass Modification
,”
Int. J. Impact Eng.
,
35
(
12
), pp.
1376
1385
.
19.
Johnson
,
G. R.
and
Holmquist
,
T. J.
, 1989, “
Test Data and Computational Strength and Fracture Model Constants for 23 Materials Subjected to Large Strains, High Strain Rates and Temperatures
,” Los Alamos National Laboratory, Report No. LA–11463-MS.
20.
Johnson
,
G. R.
and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proc. 7th Int. Symp. Ballistics
,
The Hague
,
The Netherlands
, pp.
541
548
.
21.
Johnson
,
G. R.
and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
22.
Zukas
,
J. A.
, 1982,
Impact Dynamics
,
J. A.
Zukas
,
T.
Nicholas
,
H. F.
Swift
,
L. B.
Greszczuk
, and
D. R.
Curran
, eds.,
Wiley
,
New York
, Chap. 5.
You do not currently have access to this content.