A three-dimensional constitutive model for muscle and tendon tissues is developed. Muscle and tendon are considered as composite materials that consist of fibers and the connective tissues and biofluids surrounding the fibers. The model is nonlinear, rate dependent, and anisotropic due to the presence of the fibers. Both the active and passive behaviors of the muscle are considered. The muscle fiber stress depends on the strain (length), strain-rate (velocity), and the activation level of the muscle, whereas the tendon fiber exhibits only passive behavior and the stress depends only on the strain. Multiple fiber directions are modeled via superposition. A methodology for the numerical implementation of the constitutive model in a general-purpose finite element program is developed. The current scheme is used for either static or dynamic analyses. The model is validated by studying the extension of a squid tentacle during a strike to catch prey. The behavior of parallel-fibered and pennate muscles, as well as the human semitendinosus muscle, is studied.

1.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Cole
,
G. K.
, 1997, “
Modeling Dynamic Contraction of Muscle Using the Cross-Bridge Theory
,”
Math. Biosci.
MABIAR 0025-5564,
139
, pp. 69–78.
2.
Kojic
,
M.
,
Mijailovic
,
S.
, and
Zdravkovic
,
N.
, 1998, “
Modelling of Muscle Behaviour by the Finite Element Method Using Hill’s Three-Element Model
,”
Int. J. Numer. Methods Eng.
IJNMBH 0029-5981,
43
, pp. 941–953.
3.
Martins
,
J. A. C.
,
Pires
,
E. B.
,
Salvado
,
R.
, and
Dinis
,
P. B.
, 1998, “
A Numerical Model of Passive and Active Behavior of Skeletal Muscles
,”
Comput. Methods Appl. Mech. Eng.
CMMECC 0045-7825,
151
, pp. 419–433.
4.
Johansson
,
T.
,
Meier
,
P.
, and
Blickhan
,
R.
, 2000, “
A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles
,”
J. Theor. Biol.
JTBIAP 0022-5193,
206
, pp. 131–149.
5.
Yucesoy
,
C. A.
,
Koopman
,
B. H. F. J. M.
,
Huijing
,
P. A.
, and
Grootenboer
,
H. J.
, 2002, “
Three-Dimensional Finite Element Modeling of Skeletal Muscle Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model
,”
J. Biomech.
JBMCB5 0021-9290,
35
, pp. 1253–1262.
6.
Lemos
,
R. R.
,
Epstein
,
M.
,
Herzog
,
W.
, and
Wyvill
,
B.
, 2004, “
A Framework for Structured Modeling of Skeletal Muscle
,”
Comput. Methods Biomech. Biomed. Eng.
CMBEFS 1025-5842,
7
, pp. 305–317.
7.
Tsui
,
C. P.
,
Tang
,
C. Y.
,
Leung
,
C. P.
,
Cheng
,
K. W.
,
Ng
,
Y. F.
,
Chow
,
D. H. K.
, and
Li
,
C. K.
, 2004, “
Active Finite Element Analysis of Skeletal Muscle-Tendon Complex During Isometric, Shortening and Lengthening Contraction
,”
Biomed. Mater. Eng.
ZZZZZZ 0959-2989,
14
, pp. 271–279.
8.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
, 2005, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
JBMCB5 0021-9290,
38
, pp. 657–665.
9.
Liang
,
Y.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2006, “
A Finite Element Simulation Scheme for Biological Muscular Hydrostats
,”
J. Theor. Biol.
JTBIAP 0022-5193,
242
, pp. 142–150.
10.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc., London, Ser. B
PRLBA4 0950-1193,
126
, pp. 136–195.
11.
Gordon
,
A. M.
,
Huxley
,
A. F.
, and
Julian
,
F. J.
, 1966, “
The Variation in Isometric Tension With Sarcomere Length in Vertebrate Muscle Fibres
,”
J. Physiol. (London)
JPHYA7 0022-3751,
184
, pp. 170–192.
12.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
CRBEDR 0278-940X,
17
, pp. 359–411.
13.
Huxley
,
A. F.
, 1957, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
PBBCAF 0096-4174,
7
, pp. 255–318.
14.
Horowits
,
R.
, 1992, “
Passive Force Generation and Titin Isoforms in Mammalian Skeletal Muscle
,”
Biophys. J.
BIOJAU 0006-3495,
61
, pp. 392–398.
15.
Epstein
,
M.
, and
Herzog
,
W.
, 1998,
Theoretical Models of Skeletal Muscle: Biological and Mathematical Considerations
,
Wiley
,
New York
.
16.
Mutungi
,
G.
, and
Ranatunga
,
K. W.
, 1996, “
The Viscous, Viscoelastic and Elastic Characteristics of Resting Fast and Slow Mammalian (Rat) Muscle Fibres
,”
J. Physiol. (London)
JPHYA7 0022-3751,
496
, pp. 827–836.
17.
Minajeva
,
A.
,
Neagoe
,
C.
,
Kulke
,
M.
, and
Linke
,
W. A.
, 2002, “
Titin-Based Contribution to Shortening Velocity of Rabbit Skeletal Myofibrils
,”
J. Physiol.
,
540
, pp. 177–188.
18.
Rack
,
P. M. H.
, and
Westbury
,
D. R.
, 1969, “
The Effects of Length and Stimulus Rate on Tension in the Isometric Cat Soleus Muscle
,”
J. Physiol. (London)
JPHYA7 0022-3751,
204
, pp. 443–460.
19.
Huijing
,
P. A.
, 1996, “
Important Experimental Factors for Skeletal Muscle Modelling: Non-Linear Changes of Muscle Length Force Characteristics as a Function of Degree of Activity
,”
Eur. J. Morphol.
ZZZZZZ 0924-3860,
34
, pp. 47–54.
20.
Labeit
,
D.
,
Watanabe
,
K.
,
Witt
,
C.
,
Fujita
,
H.
,
Wu
,
Y.
,
Lahmers
,
S.
,
Funck
,
T.
,
Labeit
,
S.
, and
Granzier
,
H.
, 2003, “
Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin
,”
Proc. Natl. Acad. Sci. U.S.A.
PNASA6 0027-8424,
100
, pp. 13716–13721.
21.
Joumaa
,
V.
,
Rassier
,
D. E.
,
Leonard
,
T. R.
, and
Herzog
,
W.
, 2008, “
The Origin of Passive Force Enhancement in Skeletal Muscle
,”
Am. J. Physiol.: Cell Physiol.
AJPHAP 0363-6143,
294
, pp. C74–C78.
22.
Nigg
,
B. M.
, and
Herzog
,
W.
, 1999,
Biomechanics of the Musculo-Skeletal System
, 2nd ed.,
Wiley
,
New York
.
23.
Maganaris
,
C. N.
,
Narici
,
M. V.
, and
Maffulli
,
N.
, 2008, “
Biomechanics of Achilles Tendon
,”
Disabil Rehabil.
ZZZZZZ 0963-8288,
30
, pp. 1542–1547.
24.
Van Leeuwen
,
J. L.
, and
Kier
,
W. M.
, 1997, “
Functional Design of Tentacles in Squid: Linking Sarcomere Ultrastructure to Gross Morphological Dynamics
,”
Philos. Trans. R. Soc. London, Ser. B
PTRBAE 0962-8436,
352
, pp. 551–571.
25.
Lloyd
,
D. G.
, and
Besier
,
T. F.
, 2003, “
An EMG-Driven Musculoskeletal Model for Estimation of the Human Knee Joint Moments Across Varied Tasks
,”
J. Biomech.
JBMCB5 0021-9290,
36
, pp. 765–776.
26.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
, 2004, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
JABOEG 1065-8483,
20
, pp. 367–395.
27.
ABAQUS Inc.
, 2007, ABAQUS Version 6.7 Analysis User’s Manual.
28.
Spyrou
,
L. A.
, 2009, “
Muscle and Tendon Tissues: Constitutive Modeling, Numerical Implementation and Applications
,” Ph.D. thesis, University of Thessaly, Greece.
29.
Delp
,
S. L.
,
Peter Loan
,
J.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
IEBEAX 0018-9294,
37
, pp. 757–767.
You do not currently have access to this content.