In this paper, we study the deformation of a thin elastic rod constrained inside a cylindrical tube and under the action of an end twisting moment. The ends of the rod are clamped in the lateral direction. Unlike the previous works of others, in which only the fully developed line-contact spiral was considered, we present a complete analysis on the deformation when the dimensionless twisting moment Mx is increased from zero. It is found that the straight rod buckles into a spiral shape and touches the inner wall of the tube at the midpoint when Mx reaches 8.987. As Mx increases to 11.472, the contact point in the middle splits into two, leaving the midpoint floating in the air. As Mx increases to 13.022, the midpoint returns to touch the tube wall and the two-point-contact deformation evolves to a three-point-contact deformation. Starting from Mx=13.098, the point contact in the middle evolves to a line contact, and the deformation becomes a point-line-point contact configuration and remains so thereafter. In the case when the line-contact pattern is fully developed, it is possible to predict the spiral shape analytically. The numerical results are found to agree very well with those predicted analytically. Finally, an experimental setup is constructed to observe the deformation evolution of the constrained rod under end twist.

1.
Love
,
A. E.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
2.
Champneys
,
A. R.
,
van der Heijden
,
G. H. M.
, and
Thompson
,
J. M. T.
, 1997, “
Spatially Complex Localization After One-Twist-Per-Wave Equilibria in Twisted Circular Rods With Initial Curvature
,”
Philos. Trans. R. Soc. London, Ser. A
PTRMAD 0962-8428,
355
, pp. 2151–2174.
3.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
JCTPAH 0021-9991,
209
, pp. 371–389.
4.
Lubinski
,
A.
,
Althouse
,
W. S.
, and
Logan
,
J. L.
, 1962, “
Helical Buckling of Tubing Sealed in Packers
,”
J. Pet. Technol.
JPTCAZ 0022-3522,
225
, pp. 650–670.
5.
Mitchell
,
R. F.
, 1982, “
Buckling Behavior of Well Tubing: The Packer Effect
,”
Soc. Pet. Eng. J.
SPTJAJ 0037-9999,
22
, pp. 616–624.
6.
Cheatham
,
J. B.
, and
Pattillo
,
P. D.
, 1984, “
Helical Postbuckling Configuration of a Weightless Column Under the Action of an Axial Load
,”
Soc. Pet. Eng. J.
SPTJAJ 0037-9999,
24
, pp. 467–472.
7.
Tan
,
X. C.
, and
Digby
,
P. J.
, 1993, “
Buckling of Drill String Under the Action of Gravity and Axial Thrust
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
30
, pp. 2675–2691.
8.
Wu
,
J.
,
Juvkam-Wold
,
H. C.
, and
Lu
,
R.
, 1993, “
Helical Buckling of Pipes in Extended Reach and Horizontal Wells. Part 1. Preventing Helical Buckling
,”
ASME J. Energy Resour. Technol.
JERTD2 0195-0738,
115
, pp. 190–195.
9.
Wu
,
J.
, and
Juvkam-Wold
,
H. C.
, 1993, “
Helical Buckling of Pipes in Extended Reach and Horizontal Wells. Part 2. Frictional Drag Analysis
,”
ASME J. Energy Resour. Technol.
JERTD2 0195-0738,
115
, pp. 196–201.
10.
Tan
,
X. C.
, and
Forsman
,
B.
, 1995, “
Buckling of Slender String in Cylindrical Tube under Axial Load: Experiments and Theoretical Analysis
,”
Exp. Mech.
EXMCAZ 0014-4851,
35
(
1
), pp. 55–60.
11.
Martinez
,
A.
,
Miska
,
S.
,
Kuru
,
E.
, and
Sorem
,
J.
, 2000, “
Experimental Evaluation of the Lateral Contact Force in Horizontal Wells
,”
ASME J. Energy Resour. Technol.
JERTD2 0195-0738,
122
, pp. 123–128.
12.
Huang
,
N. C.
, and
Pattillo
,
P. D.
, 2000, “
Helical Buckling of a Tube in an Inclined Wellbore
,”
Int. J. Non-Linear Mech.
IJNMAG 0020-7462,
35
, pp. 911–923.
13.
Cunha
,
J. C.
, 2003, “
Buckling of Tubulars Inside Wellbores: Review on Recent Theoretical and Experimental Works
,”
SPE Drill. Completion
SDCOE5 1064-6671,
19
, pp. 13–19.
14.
McCourt
,
I.
,
Truslove
,
T.
, and
Kubie
,
J.
, 2002, “
Penetration of Tubulars Drill Pipes in Horizontal Oil Wells
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
PMCSED 0954-4062,
216
, pp. 1237–1245.
15.
McCourt
,
I.
,
Truslove
,
T.
, and
Kubie
,
J.
, 2004, “
On the Penetration of Tubular Drill Pipes in Horizontal Oil Wells
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
PMCSED 0954-4062,
218
, pp. 1063–1081.
16.
McCourt
,
I.
, and
Kubie
,
J.
, 2005, “
Limits on the Penetration of Coiled Tubing in Horizontal Oil Wells: Effect of the Pipe Geometry
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
PMCSED 0954-4062,
219
, pp. 1191–1197.
17.
Wu
,
J.
, and
Juvkam-Wold
,
H. C.
, 1995, “
The Effect of Wellbore Curvature on Tubular Buckling and Lockup
,”
ASME J. Energy Resour. Technol.
JERTD2 0195-0738,
117
, pp. 214–218.
18.
Kuru
,
E.
,
Martinez
,
A.
,
Miska
,
S.
, and
Qiu
,
W.
, 2000, “
The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells
,”
ASME J. Energy Resour. Technol.
JERTD2 0195-0738,
122
, pp. 129–135.
19.
Feodosyev
,
V. I.
, 1977,
Selected Problems and Questions in Strength of Materials
,
Mir
,
Moscow
.
20.
Sorenson
,
K. G.
, and
Cheatham
,
J. B.
, Jr.
, 1986, “
Post-Buckling Behavior of a Circular Rod Constrained Within a Circular Cylinder
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
53
, pp. 929–934.
21.
Schneider
,
P. A.
, 2003,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
Dekker
,
New York
.
22.
Paslay
,
P. R.
, and
Bogy
,
D. B.
, 1966, “
The Stability of a Circular Rod Laterally Constrained to be in Contact With an Inclined Circular Cylinder
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
31
, pp. 605–610.
23.
Miska
,
S.
, and
Cunha
,
J. C.
, 1995, “
An Analysis of Helical Buckling of Tubulars Subjected to Axial and Torsional Loading in Inclined Wellbore
,”
Proceedings of SPE Production and Operations Symposium, SPE 29460
, Oklahoma City, OK, Apr. 2–4.
24.
van der Heijden
,
G. H. M.
, 2001, “
The Static Deformation of a Twisted Elastic Rod Constrained to Lie on a Cylinder
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
457
, pp. 695–715.
25.
van der Heijden
,
G. H. M.
,
Champneys
,
A. R.
, and
Thompson
,
J. M. T.
, 2002, “
Spatially Complex Localisation in Twisted Elastic Rods Constrained to a Cylinder
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
39
, pp. 1863–1883.
26.
van der Heijden
,
G. H. M.
,
Champneys
,
A. R.
, and
Thompson
,
J. M. T.
, 1998, “
Spatially Complex Localisation in Twisted Elastic Rods Constrained to Lie in the Plane
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
47
, pp. 59–79.
27.
van der Heijden
,
G. H. M.
, 2003, “
Helical Collapse of a Whirling Elastic Rod Forced to Lie on a Cylinder
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
70
, pp. 771–774.
28.
Ziegler
,
H.
, 1968,
Principles of Structural Stability
,
Blaisdell
,
Waltham, MA
.
You do not currently have access to this content.