Cells communicate with their external environment via focal adhesions and generate activation signals that in turn trigger the activity of the intracellular contractile machinery. These signals can be triggered by mechanical loading that gives rise to a cooperative feedback loop among signaling, focal adhesion formation, and cytoskeletal contractility, which in turn equilibrates with the applied mechanical loads. We devise a signaling model that couples stress fiber contractility and mechano-sensitive focal adhesion models to complete this above mentioned feedback loop. The signaling model is based on a biochemical pathway where IP3 molecules are generated when focal adhesions grow. These IP3 molecules diffuse through the cytosol leading to the opening of ion channels that disgorge Ca2+ from the endoplasmic reticulum leading to the activation of the actin/myosin contractile machinery. A simple numerical example is presented where a one-dimensional cell adhered to a rigid substrate is pulled at one end, and the evolution of the stress fiber activation signal, stress fiber concentrations, and focal adhesion distributions are investigated. We demonstrate that while it is sufficient to approximate the activation signal as spatially uniform due to the rapid diffusion of the IP3 through the cytosol, the level of the activation signal is sensitive to the rate of application of the mechanical loads. This suggests that ad hoc signaling models may not be able to capture the mechanical response of cells to a wide range of mechanical loading events.

1.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
NMAACR 1476-1122,
2
(
11
), pp. 715–725.
2.
Chen
,
C. S.
,
Tan
,
J.
, and
Tien
,
J.
, 2004, “
Mechanotransduction at Cell-Matrix and Cell-Cell Contacts
,”
Annu. Rev. Biomed. Eng.
ARBEF7 1523-9829,
6
(
1
), pp. 275–302.
3.
Huang
,
H.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2004, “
Cell Mechanics and Mechanotransduction: Pathways, Probes, and Physiology
,”
Am. J. Physiol.: Cell Physiol.
AJPHAP 0363-6143,
287
(
1
), pp. C1–C11.
4.
Janmey
,
P. A.
, and
Weitz
,
D. A.
, 2004, “
Dealing With Mechanics: Mechanisms of Force Transduction in Cells
,”
Trends Biochem. Sci.
TBSCDB 0167-7640,
29
(
7
), pp. 364–370.
5.
Haidekker
,
M. A.
,
L’heureux
,
N.
, and
Frangos
,
J. A.
, 2000, “
Fluid Shear Stress Increases Membrane Fluidity in Endothelial Cells: A Study With Dcvj Fluorescence
,”
Am. J. Physiol. Heart Circ. Physiol.
ZZZZZZ 0363-6135,
278
(
4
), pp. H1401–H1406.
6.
White
,
C. R.
,
Haidekker
,
M.
,
Bao
,
X.
, and
Frangos
,
J. A.
, 2001, “
Temporal Gradients in Shear, But Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
CIRCAZ 0009-7322,
103
(
20
), pp. 2508–2513.
7.
Hamill
,
O. P.
, and
Martinac
,
B.
, 2001, “
Molecular Basis of Mechanotransduction in Living Cells
,”
Physiol. Rev.
PHREA7 0031-9333,
81
(
2
), pp. 685–740.
8.
Odde
,
D.
,
Ma
,
L.
,
Briggs
,
A.
,
Demarco
,
A.
, and
Kirschner
,
M.
, 1999, “
Microtubule Bending and Breaking in Living Fibroblast Cells
,”
J. Cell. Sci.
JNCSAI 0021-9533,
112
(
19
), pp. 3283–3288.
9.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
, 1997, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm That Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
PNASA6 0027-8424,
94
(
3
), pp. 849–854.
10.
Helmke
,
B. P.
,
Rosen
,
A. B.
, and
Davies
,
P. F.
, 2003, “
Mapping Mechanical Strain of an Endogenous Cytoskeletal Network in Living Endothelial Cells
,”
Biophys. J.
BIOJAU 0006-3495,
84
(
4
), pp. 2691–2699.
11.
Sawada
,
Y.
, and
Sheetz
,
M. P.
, 2002, “
Force Transduction by Triton Cytoskeletons
,”
J. Cell Biol.
JCLBA3 0021-9525,
156
(
4
), pp. 609–615.
12.
Kaazempur Mofrad
,
M. R.
,
Abdul-Rahim
,
N. A.
,
Karcher
,
H.
,
Mack
,
P. J.
,
Yap
,
B.
, and
Kamm
,
R. D.
, 2005, “
Exploring the Molecular Basis for Mechanosensation, Signal Transduction, and Cytoskeletal Remodeling
,”
Acta Biomater.
ZZZZZZ 1742-7061,
1
(
3
), pp. 281–293.
13.
Adams
,
W.
,
Pong
,
T.
,
Geisse
,
N.
,
Sheehy
,
S.
,
Diop-Frimpong
,
B.
, and
Parker
,
K.
, 2007, “
Engineering Design of a Cardiac Myocyte
,”
J. Comput.-Aided Mater. Des.
JCODES 0928-1045,
14
(
1
), pp. 19–29.
14.
Wang
,
Y.
,
Botvinick
,
E. L.
,
Zhao
,
Y.
,
Berns
,
M. W.
,
Usami
,
S.
,
Tsien
,
R. Y.
, and
Chien
,
S.
, 2005, “
Visualizing the Mechanical Activation of Src
,”
Nature (London)
NATUAS 0028-0836,
434
(
7036
), pp. 1040–1045.
15.
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Riveline
,
D.
,
Goichberg
,
P.
,
Tzur
,
G.
,
Sabanay
,
I.
,
Mahalu
,
D.
,
Safran
,
S.
,
Bershadsky
,
A.
,
Addadi
,
L.
, and
Geiger
,
B.
, 2001, “
Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
,”
Nat. Cell Biol.
NCBIFN 1465-7392,
3
(
5
), pp. 466–472.
16.
Riveline
,
D.
,
Zamir
,
E.
,
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Ishizaki
,
T.
,
Narumiya
,
S.
,
Kam
,
Z.
,
Geiger
,
B.
, and
Bershadsky
,
A. D.
, 2001, “
Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1-Dependent and Rock-Independent Mechanism
,”
J. Cell Biol.
JCLBA3 0021-9525,
153
(
6
), pp. 1175–1186.
17.
Deshpande
,
V. S.
,
Mrksich
,
M.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
, 2008, “
A Bio-Mechanical Model for Coupling Cell Contractility With Focal Adhesion Formation
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
56
(
4
), pp. 1484–1510.
18.
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
, 2006, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A.
PNASA6 0027-8424,
103
(
38
), pp. 14015–14020.
19.
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
, 2007, “
A Model for the Contractility of the Cytoskeleton Including the Effects of Stress-Fibre Formation and Dissociation
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
463
(
2079
), pp. 787–815.
20.
Icard-Arcizet
,
D.
,
Cardoso
,
O.
,
Richert
,
A.
, and
Hénon
,
S.
, 2008, “
Cell Stiffening in Response to External Stress Is Correlated to Actin Recruitment
,”
Biophys. J.
BIOJAU 0006-3495,
94
(
7
), pp. 2906–2913.
21.
Veigel
,
C.
,
Molloy
,
J. E.
,
Schmitz
,
S.
, and
Kendrick-Jones
,
J.
, 2003, “
Load-Dependent Kinetics of Force Production by Smooth Muscle Myosin Measured With Optical Tweezers
,”
Nat. Cell Biol.
NCBIFN 1465-7392,
5
(
11
), pp. 980–986.
22.
Besser
,
A.
, and
Schwarz
,
U. S.
, 2007, “
Coupling Biochemistry and Mechanics in Cell Adhesion: A Model for Inhomogeneous Stress Fiber Contraction
,”
New J. Phys.
NJOPFM 1367-2630,
9
, p. 425.
23.
Pathak
,
A.
,
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
, 2008, “
The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates
,”
J. R. Soc., Interface
JRSICU 1742-5689,
5
(
22
), pp. 507–524.
24.
Mcgarry
,
J. P.
,
Fu
,
J.
,
Yang
,
M. T.
,
Chen
,
C. S.
,
Mcmeeking
,
R. M.
,
Evans
,
A. G.
, and
Deshpande
,
V. S.
, 2009, “
Simulation of the Contractile Response of Cells on an Array of Micro-Posts
,”
Philos. Trans. R. Soc. London, Ser. A
PTRMAD 0962-8428,
367
(
1902
), pp. 3477–3497.
25.
Wei
,
Z.
,
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Evans
,
A. G.
, 2008, “
Analysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
130
(
3
), p. 031009.
26.
Allbritton
,
N.
,
Meyer
,
T.
, and
Stryer
,
L.
, 1992, “
Range of Messenger Action of Calcium Ion and Inositol 1,4,5-Trisphosphate
,”
Science
SCIEAS 0036-8075,
258
(
5089
), pp. 1812–1815.
27.
Jafri
,
M. S.
, and
Keizer
,
J.
, 1995, “
On the Roles of Ca2+ Diffusion, Ca2+ Buffers, and the Endoplasmic Reticulum in Ip3-Induced Ca2+ Waves
,”
Biophys. J.
BIOJAU 0006-3495,
69
(
5
), pp. 2139–2153.
28.
Wagner
,
J.
, and
Keizer
,
J.
, 1994, “
Effects of Rapid Buffers on Ca2+ Diffusion and Ca2+ Oscillations
,”
Biophys. J.
BIOJAU 0006-3495,
67
(
1
), pp. 447–456.
29.
Galbraith
,
C. G.
,
Yamada
,
K. M.
, and
Sheetz
,
M. P.
, 2002, “
The Relationship Between Force and Focal Complex Development
,”
J. Cell Biol.
JCLBA3 0021-9525,
159
(
4
), pp. 695–705.
30.
Jungbauer
,
S.
,
Gao
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
, 2008, “
Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates
,”
Biophys. J.
BIOJAU 0006-3495,
95
(
7
), pp. 3470–3478.
31.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Watson
,
J. D.
, 2002,
Molecular Biology of the Cell
,
Garland
,
New York
.
32.
Carman
,
C. V.
, and
Springer
,
T. A.
, 2003, “
Integrin Avidity Regulation: Are Changes in Affinity and Conformation Underemphasized?
,”
Curr. Opin. Cell Biol.
COCBE3 0955-0674,
15
(
5
), pp. 547–556.
33.
McCleverty
,
C. J.
, and
Liddington
,
R. C.
, 2003, “
Engineered Allosteric Mutants of the Integrin αMβ2 I Domain: Structural and Functional Studies
,”
Biochem. J.
BIJOAK 0264-6021,
372
(
1
), pp. 121–127.
34.
Burridge
,
K.
, and
Chrzanowska-Wodnicka
,
M.
, 1996, “
Focal Adhesions, Contractility and Signaling
,”
Annu. Rev. Cell Dev. Biol.
ARDBF8 1081-0706,
12
(
1
), pp. 463–519.
35.
Hotchin
,
N.
, and
Hall
,
A.
, 1995, “
The Assembly of Integrin Adhesion Complexes Requires Both Extracellular Matrix and Intracellular Rho/Rac Gtpases
,”
J. Cell Biol.
JCLBA3 0021-9525,
131
(
6
), pp. 1857–1865.
36.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
, 2003, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
PNASA6 0027-8424,
100
(
4
), pp. 1484–1489.
37.
Clapham
,
D. E.
, 1995, “
Calcium Signaling
,”
Cell
CELLB5 0092-8674,
80
(
2
), pp. 259–268.
38.
Clapham
,
D. E.
, 2007, “
Calcium Signaling
,”
Cell
CELLB5 0092-8674,
131
(
6
), pp. 1047–1058.
39.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
PRLBA4 0962-8452,
126
(
843
), pp. 136–195.
You do not currently have access to this content.