Chandraseker et al. (2009, “An Atomistic-Continuum Cosserat Rod Model of Carbon Nanotubes,” J. Mech. Phys. Solids, 57, pp. 932–958), in a 2009 JMPS paper, proposed an atomistic-continuum model, based on Cosserat rod theory, for deformation of a single-walled carbon nanotube (SWNT). This model allows extension and twist, as well as shear and bending (in two directions) of a SWNT. This present paper proposes a finite element method (FEM) implementation of the above mentioned Cosserat rod model for a SWNT, subjected, in general, to axial and transverse loads, as well as bending moments and torques. The resulting FEM implementation includes both geometric and material nonlinearities. Numerical results for several examples are presented in this paper. Finally, a recent experimental paper on SWNTs (Xu, Y-.Q., et al., 2009, “Bending and Twisting of Suspended Single-Walled Carbon Nanotubes in Solution,” ASAP Nano Lett., 9, pp. 1609–1614) is revisited herein. It is pointed out in the present paper that Xu et al. attempted to determine the bending stiffness of a SWNT from an experiment in which the dominant mode of deformation is stretching, not bending. (Their model, Euler–Bernoulli beam bending, should perhaps have been extended to include stretching.) As a result, their measured deflection is nearly insensitive to the bending modulus.

1.
Chandraseker
,
K.
,
Mukherjee
,
S.
,
Paci
,
J. T.
, and
Schatz
,
G. C.
, 2009, “
An Atomistic-Continuum Cosserat Rod Model of Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
932
958
.
2.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2004, “
Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule
,”
Phys. Rev. B
0556-2805,
69
, p.
115415
.
3.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
0556-2805,
65
, p.
235430
.
4.
Chandraseker
,
K.
, and
Mukherjee
,
S.
, 2006, “
Coupling of Extension and Twist in Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
73
(
2
), pp.
315
326
.
5.
Chandraseker
,
K.
,
Mukherjee
,
S.
, and
Mukherjee
,
Y. X.
, 2006, “
Modifications to the Cauchy-Born Rule: Applications in the Deformation of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
7128
7144
.
6.
Chandraseker
,
K.
, and
Mukherjee
,
S.
, 2007, “
Atomistic-continuum and Ab Initio Estimation of the Elastic Moduli of Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
40
, pp.
147
158
.
7.
Chang
,
T.
, and
Gao
,
H.
, 2003, “
Size-Dependent Elastic Properties of a Single-walled Carbon Nanotube via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1059
1074
.
8.
Geng
,
J.
, and
Chang
,
T.
, 2006, “
Nonlinear Stick-Spiral Model for Predicting Mechanical Behavior of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
74
, p.
245428
.
9.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Robio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4502
4505
.
10.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Robio
,
A.
, 1999, “
Elastic Properties of Single-Walled Nanotubes
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
68
, pp.
287
292
.
11.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2004, “
Mechanics of Axial Compression of Single and Multi-Walled Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
279
289
.
12.
Ustünel
,
H.
,
Roundy
,
D.
, and
Arias
,
T. A.
, 2005, “
Modeling a Suspended Nanotube Oscillator
,”
Nano Lett.
1530-6984,
5
(
3
), pp.
523
526
.
13.
Liang
,
H.
, and
Upmanyu
,
M.
, 2006, “
Axial-Strain-Induced Torsion in Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
165501
.
14.
Ru
,
C. Q.
, 2000, “
Effective Bending Stiffness of Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
62
, pp.
9973
9976
.
15.
Xiao
,
T.
,
Xu
,
X.
, and
Liao
,
K.
, 2004, “
Characterization of Nonlinear Elasticity and Elastic Instability in Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
95
, pp.
8145
8148
.
16.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
17.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Guebelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2003, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
429
442
.
18.
Healey
,
T. J.
, 2002, “
Material Symmetry and Chirality in Nonlinearly Elastic Rods
,”
Math. Mech. Solids
1081-2865,
7
, pp.
405
420
.
19.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
116
.
20.
Kumar
,
A.
, and
Healey
,
T. J.
, 2010, “
A Generalized Computational Approach to Stability of Elastic Equilibria of Nonlinearly Elastic Rods in the Presence of Constraints
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
1805
1815
.
21.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
279
292
.
22.
Xu
,
Y-. Q.
,
Barnard
,
A.
, and
McEuen
,
P. L.
, 2009, “
Bending and Twisting of Suspended Single-Walled Carbon Nanotubes in Solution
,”
ASAP Nano Lett.
,
9
, pp.
1609
1614
.
23.
Gould
,
T.
, and
Burton
,
D. A.
, 2006, “
A Cosserat Rod Model With Microstructure
,”
New J. Phys.
1367-2630,
137
(
8
), pp.
1
17
.
24.
Antman
,
S. S.
, 1995,
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York
.
25.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
26.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
, 2006, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
74
, p.
245413
.
27.
Kumar
,
A.
,
Mukherjee
,
S.
,
Paci
,
J. T.
,
Chandraseker
,
K.
, and
Schatz
,
G. C.
, “
One Dimensional Continuum Rod Model for Three Dimensional Deformations of Single-Walled Carbon Nanotubes
,” submitted.
28.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
1638
1641
.
29.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1991, “
A Geometrically-Exact Rod Model Incorporating Shear and Torsion-Warping Deformation
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
371
393
.
30.
Kumar
,
A.
, and
Mukherjee
,
S.
, 2011, “
A Geometrically Exact Rod Model Including In-Plane Cross-Sectional Deformation
,”
ASME J. Appl. Mech.
0021-8936,
78
(
1
), p.
011010
.
You do not currently have access to this content.