We study experimentally the mechanical response of elastic polyether polyurethane (EPP) foams up to large strains over the range of commercially available densities and for a variety of loading conditions. To this end, we subject the foams in a set of EPP foams to five different tests, namely, compression along the rise direction, compression along a transverse direction, tension along the rise direction, simple shear combined with compression along the rise direction, and hydrostatic pressure combined with compression along the rise direction. The set of EPP foams consists of foams of five apparent densities ranging from 50.3kg/m3 to 221kg/m3. For each test and foam density, we report the mechanical response in the form of a stress-strain curve or a force-displacement curve. For some tests and foam densities, we use a digital image correlation method to measure the strain field on the surface of the foam. In a discussion of our experimental results, we put emphasis on the relation between the stress-strain or force-displacement curve recorded in a test and the attendant strain fields.

1.
Artavia
,
L. D.
, and
Macosko
,
C. W.
, 1994, “
Polyurethane Flexible Foam Formation
,”
Low Density Cellular Plastics: Physical Basis of Behavior
,
N. C.
Hilyard
and
A.
Cunningham
, eds.,
Chapman and Hall
,
London
, pp.
22
55
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structures and Properties
,
Cambridge University Press
,
UK
.
3.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1982, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London
0370-1662,
382
, pp.
43
59
.
4.
Warren
,
W. E.
, and
Kraynik
,
A. M.
, 1988, “
The Linear Elastic Properties of Open-Cell Foams
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
341
347
.
5.
Goods
,
S. H.
,
Neuschwanger
,
C. L.
,
Henderson
,
C. C.
, and
Skala
,
D. M.
, 1998, “
Mechanical Properties of Crete, a Polyurethane Foam
,”
J. Appl. Polym. Sci.
0021-8995,
68
, pp.
1045
1055
.
6.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W. Y.
, 2005, “
Compressive Response of Open-Cell Foams. Part I: Morphology and Elastic Properties
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
1355
1379
.
7.
Mills
,
N. J.
, 1997, “
Time Dependence of the Compressive Response of Polypropylene Bead Foam
,”
Cell. Polym.
0262-4893,
16
, pp.
194
215
.
8.
Gioia
,
G.
,
Wang
,
Y.
, and
Cuitiño
,
A. M.
, 2001, “
The Energetics of Heterogenous Deformation in Open-Cell Solid Foams
,”
Proc. R. Soc. London
0370-1662,
457
, pp.
1079
1096
.
9.
Gong
,
L.
, and
Kyriakides
,
S.
, 2005, “
Compressive Response of Open-Cell Foams. Part II: Initiation and Evolution of Crushing
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
1381
1399
.
10.
Shaw
,
M. C.
, and
Sata
,
T.
, 1966, “
The Plastic Behavior of Cellular Materials
,”
Int. J. Mech. Sci.
0020-7403,
8
, pp.
469
478
.
11.
Zaslawsky
,
M.
, 1973, “
Multiaxial-Stress Studies on Rigid Polyurethane Foam
,”
Exp. Mech.
0014-4851,
13
, pp.
70
76
.
12.
Maji
,
A. K.
,
Schreyer
,
H. L.
,
Donald
,
S.
,
Zuo
,
Q.
, and
Satpathi
,
D.
, 1995, “
Mechanical Properties of Polyurethane Foam Impact Limiters
,”
J. Eng. Mech.
0733-9399,
121
, pp.
528
540
.
13.
Triantafyllidis
,
N.
, and
Schraad
,
M. W.
, 1998, “
Onset of Failure in Aluminum Honeycombs Under General In-Plane Loading
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1089
1124
.
14.
Zhang
,
J.
,
Lin
,
Z.
,
Wong
,
A.
,
Kikuchi
,
N.
,
Li
,
V. C.
,
Yee
,
A. F.
, and
Nusholtz
,
G. S.
, 1997, “
Constitutive Modeling and Material Characterization of Polymeric Foams
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
284
291
.
15.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2001, “
Multi-Axial Yield Behaviour of Polymer Foams
,”
Acta Mater.
1359-6454,
49
, pp.
1859
1866
.
16.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
, and
Wang
,
K. A.
, 2002, “
Failure of Cellular Foams Under Multiaxial Loading
,”
Composites, Part A
1359-835X,
33
, pp.
163
176
.
17.
Viot
,
P.
, 2009, “
Hydrostatic Compression on Polypropylene Foam
,”
Int. J. Impact Eng.
0734-743X,
36
, pp.
975
989
.
18.
Vaz
,
M. F.
, and
Fortes
,
M. A.
, 1993, “
Characterization of Deformation Bands in the Compression of Cellular Materials
,”
J. Mater. Sci. Lett.
0261-8028,
12
, pp.
1408
1410
.
19.
Peters
,
W. H.
, and
Ranson
,
W. F.
, 1982, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
0091-3286,
21
, pp.
427
431
.
20.
Chu
,
T. C.
,
Ranson
,
W. F.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
, 1985, “
Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
0014-4851,
25
, pp.
232
244
.
21.
Bart-Smith
,
H.
,
Bastawros
,
A. F.
,
Mumm
,
D. R.
,
Evans
,
A. G.
,
Sypeck
,
D. J.
, and
Wadley
,
H. N. G.
, 1998, “
Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-Ray Tomography and Surface Strain Mapping
,”
Acta Mater.
1359-6454,
46
, pp.
3583
3592
.
22.
Zhang
,
D.
,
Zhang
,
X.
, and
Cheng
,
G.
, 1999, “
Compression Strain Measurement by Digital Speckle Correlation
,”
Exp. Mech.
0014-4851,
39
, pp.
62
65
.
23.
Bastawros
,
A. F.
,
Bart-Smith
,
H.
, and
Evans
,
A. G.
, 2000, “
Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
301
322
.
24.
Wang
,
Y.
, and
Cuitiño
,
A. M.
, 2002, “
Full-Field Measurements of Heterogeneous Deformation Patterns on Polymeric Foams Using Digital Image Correlation
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3777
3796
.
25.
Gao
,
Z.
,
Wang
,
Y.
,
Gioia
,
G.
, and
Cuitiño
,
A. M.
, 2002, “
A Global Approach for Digital Speckle Correlation
,”
Proceedings of the 2002 SEM Annual Conference and Exposition on Experimental and Applied Mechanics
, Vol.
1
, Society for Experimental Mechanics, pp.
250
254
.
26.
Zhou
,
J.
,
Gao
,
Z.
,
Cuitiño
,
A. M.
, and
Soboyejo
,
W. O.
, 2004, “
Effects of Heat Treatment on the Compressive Deformation Behavior of Open Cell Aluminum Foams
,”
Mater. Sci. Eng., A
0921-5093,
386
, pp.
118
128
.
27.
Zhou
,
J.
,
Gao
,
Z.
,
Cuitiño
,
A. M.
, and
Soboyejo
,
W. O.
, 2005, “
Fatigue of As-Fabricated Open Cell Aluminum Foams
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
, pp.
40
45
.
28.
Zhou
,
J.
,
Gao
,
Z.
,
Allameh
,
S.
,
Akpan
,
E.
,
Cuitino
,
A. M.
, and
Soboyejo
,
W. O.
, 2005, “
Multiscale Deformation of Open Cell Aluminum Foams
,”
Mech. Adv. Mater. Structures
,
12
, pp.
201
216
.
29.
Cao
,
Y.
,
Bly
,
R.
,
Moore
,
W.
,
Gao
,
Z.
,
Cuitiño
,
A. M.
, and
Soboyejo
,
W. O.
, 2006, “
Investigation of Viscoelasticity of Human Osteosarcoma Cells Using Shear Assay Experiments
,”
J. Mater. Res.
0884-2914,
21
, pp.
1922
1930
.
30.
Cao
,
Y.
,
Bly
,
R.
,
Moore
,
W.
,
Gao
,
Z.
,
Cuitiño
,
A. M.
, and
Soboyejo
,
W. O.
, 2007, “
On the Measurement of Human Osteosarcoma Cell Elastic Modulus Using Shear Assay Experiments
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
18
, pp.
103
109
.
31.
Gao
,
Z.
, and
Desai
,
J. P.
, 2010, “
Estimating Zero-Strain States of Very Soft Tissue Under Gravity Loading Using Digital Image Correlation
,”
Med. Image Anal.
1361-8415,
14
, pp.
126
137
.
32.
Mullins
,
L.
, 1969, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
0035-9475,
42
, pp.
339
362
.
33.
Laroussi
,
M.
,
Sab
,
K.
, and
Alaoui
,
A.
, 2002, “
Foam Mechanics: Nonlinear Response of an Elastic 3D-Periodic Microstructure
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3599
3623
.
34.
Gong
,
L.
, 2005, “
The Compressive Response of Open-Cell Foams
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
35.
Wang
,
Y.
, and
Cuitino
,
A. M.
, 2000, “
Three-Dimensional Nonlinear Open-Cell Foams With Large Deformations
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
961
988
.
36.
Lakes
,
R.
,
Rosakis
,
P.
, and
Ruina
,
A.
, 1993, “
Microbuckling Instability in Elastomeric Cellular Solids
,”
J. Mater. Sci.
0022-2461,
28
, pp.
4667
4672
.
37.
Ericksen
,
J. L.
, 1988,
Introduction to the Thermodynamics of Solids
, 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.