The dynamic response of a free-standing plate subjected to a blast wave is studied numerically to investigate the effects of fluid-structure interaction (FSI) in blast wave mitigation. Previous work on the FSI between a blast wave and a free-standing plate (Kambouchev, N., et al., 2006, “Nonlinear Compressibility Effects in Fluid-Structure Interaction and Their Implications on the Air-Blast Loading of Structures,” J. Appl. Phys., 100(6), p. 063519) has assumed a constant atmospheric pressure at the back of the plate and neglected the resistance caused by the shock wave formation due to the receding motion of the plate. This paper develops an FSI model that includes the resistance caused by the shock wave formation at the back of the plate. The numerical results show that the resistance to the plate motion is especially pronounced for a light plate, and as a result, the previous work overpredicts the mitigation effects of FSI. Therefore, the effects of the interaction between the plate and the shock wave formation at the back of the plate should be considered in blast wave mitigation.

1.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2006, “
Nonlinear Compressibility Effects in Fluid-Structure Interaction and Their Implications on the Air-Blast Loading of Structures
,”
J. Appl. Phys.
0021-8979,
100
(
6
), p.
063519
.
2.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2007, “
Numerical Simulation of the Fluid-Structure Interaction Between Air Blast Waves and Free-Standing Plates
,”
Comput. Struct.
0045-7949,
85
, pp.
923
931
.
3.
Kambouchev
,
N.
,
Radovitzky
,
R.
, and
Noels
,
L.
, 2007, “
Fluid-Structure Interaction Effects in the Dynamic Response of Free-Standing Plates to Uniform Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
1042
1045
.
4.
Kambouchev
,
N.
, 2007, “
Analysis of Blast Mitigation Strategies Exploiting Fluid-Structure Interaction
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
5.
Chun
,
S.
,
Kapoor
,
H.
, and
Kapania
,
R. K.
, 2005, “
Nonlinear Fluid-Structure Interaction of Flexible Shelters Under Blast Loading
,”
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, AIAA, Austin, TX, Apr. 18–21, pp.
2005
2176
.
6.
Main
,
J. A.
, and
Gazonas
,
G. A.
, 2008, “
Uniaxial Crushing of Sandwich Plates Under Air Blast: Influence of Mass Distribution
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
2297
2321
.
7.
Espinosa
,
H. D.
,
Lee
,
S.
, and
Moldovan
,
N.
, 2006, “
A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading
,”
Exp. Mech.
0014-4851,
46
, pp.
805
824
.
8.
Tai
,
C. H.
,
Teng
,
J. T.
,
Lo
,
S. W.
, and
Liu
,
C. W.
, 2005, “
A Three-Dimensional Numerical Investigation Into the Interaction of Blast Waves With Bomb Shelters
,”
JSME Intl. J., Ser. B
,
48
(
4
), pp.
820
829
.
9.
Shi
,
Y.
,
Hao
,
H.
, and
Li
,
Z. X.
, 2007, “
Numerical Simulation of Blast Wave Interaction With Structure Columns
,”
Shock Waves
0938-1287,
17
, pp.
113
133
.
10.
Dewey
,
J. M.
, and
McMillin
,
D. J.
, 1981, “
An Analysis of the Particle Trajectories in Spherical Blast Waves Reflected From Real and Ideal Surfaces
,”
Can. J. Phys.
0008-4204,
59
(
10
), pp.
1380
1390
.
11.
Takayama
,
K.
, and
Sekiquchi
,
H.
, 1981, “
Formation and Diffraction of Spherical Shock Waves in a Shock Tube
,”
Rep. Inst. High Speed Mech., Tohoku Univ.
0370-5315,
43
, pp.
89
119
.
12.
Igra
,
O.
,
Hu
,
G.
,
Falcovitz
,
J.
, and
Heilig
,
W.
, 2003, “
Blast Wave Reflection From Wedges
,”
ASME J. Fluids Eng.
0098-2202,
125
(
3
), pp.
510
519
.
13.
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
Van Leer
,
B.
, 1986, “
Comparison of Finite Volume Flux Vector Splitting for the Euler Equations
,”
AIAA J.
0001-1452,
24
(
9
), pp.
1453
1460
.
14.
van Leer
,
B.
, 1982, “
Flux-Vector Splitting for the Euler Equations
,”
Lect. Notes Phys.
0075-8450,
170
, pp.
507
512
.
15.
Su
,
Z.
,
Peng
,
W.
,
Zhang
,
Z.
,
Gogos
,
G.
,
Skaggs
,
R.
, and
Cheeseman
,
B.
, 2008, “
Numerical Simulation of a Novel Blast Wave Mitigation Device
,”
Int. J. Impact Eng.
0734-743X,
35
(
5
), pp.
336
346
.
16.
Kinney
,
G. F.
, and
Graham
,
K. J.
, 1985,
Explosive Shocks in Air
, 2nd ed.,
Springer-Verlag
,
New York
, Chap. 5.
17.
Anderson
,
J. D.
, 2003,
Modern Compressible Flow: With Historical Perspective
, 3rd ed.,
McGraw-Hill
,
New York
, Chap. 7.
You do not currently have access to this content.