The fully intrinsic equations for beams comprise a relatively new set of equations for nonlinear modeling of structures comprised of beams. These equations are geometrically exact and constitute a closed set of equations even though they include neither displacement nor rotation variables. They do not suffer from the singularities and infinite-degree nonlinearities normally associated with finite rotation variables. In fact, they have a maximum degree of nonlinearity equal to 2. In spite of these and other advantages of these equations, using them for problems with certain boundary conditions may not be straightforward. This paper will examine the challenges of modeling various boundary conditions using fully intrinsic equations, thus helping future researchers to decide whether or not the fully intrinsic equations are suitable for solving a specific problem and elucidating pathways for their application to more general problems.

1.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
, 1983, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
0045-7949,
16
(
1–4
), pp.
403
413
.
2.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
, 1997, “
VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling
,”
J. Am. Helicopter Soc.
0002-8711,
42
(
1
), pp.
27
38
.
3.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V. V.
, and
Cesnik
,
C. E. S.
, 2002, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
0020-7683,
39
(
19
), pp.
5101
5121
.
4.
Hodges
,
D. H.
, 2006,
Nonlinear Composite Beam Theory
,
AIAA
,
Reston, VA
.
5.
Hodges
,
D. H.
, 2003, “
Geometrically-Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1131
1137
.
6.
Hodges
,
D. H.
, 2009, “
Corrigendum: Geometrically-Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
0001-1452,
47
(
5
), pp.
1308
1309
.
7.
Hegemier
,
G. A.
, and
Nair
,
S.
, 1977, “
A Nonlinear Dynamical Theory for Heterogeneous, Anisotropic, Elastic Rods
,”
AIAA J.
0001-1452,
15
(
1
), pp.
8
15
.
8.
Hodges
,
D. H.
, 1990, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
0020-7683,
26
(
11
), pp.
1253
1273
.
9.
van der Heijden
,
G. H. M.
,
Neukirch
,
S.
,
Goss
,
V. G. A.
, and
Thompson
,
J. M. T.
, 2003, “
Instability and Self-Contact Phenomena in the Writhing of Clamped Rods
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
161
196
.
10.
Goyal
,
S.
,
Perkins
,
N.
, and
Lee
,
C.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
0021-9991,
209
, pp.
371
389
.
11.
Goyal
,
S.
,
Perkins
,
N.
, and
Meiners
,
J. -C.
, 2008, “
Resolving the Sequence-Dependent Stiffness of DNA Using Cyclization Experiments and a Computational Rod Model
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011003
.
12.
Lu
,
C. -L.
, and
Perkins
,
N.
, 1994, “
Nonlinear Spatial Equilibria and Stability of Cables Under Uni-Axial Torque and Thrust
,”
ASME J. Appl. Mech.
0021-8936,
61
(
4
), pp.
879
886
.
13.
Patil
,
M. J.
, and
Hodges
,
D. H.
, 2006, “
Flight Dynamics of Highly Flexible Flying Wings
,”
J. Aircr.
0021-8669,
43
(
6
), pp.
1790
1799
.
14.
Chang
,
C. -S.
,
Hodges
,
D. H.
, and
Patil
,
M. J.
, 2008, “
Flight Dynamics of Highly Flexible Aircraft
,”
J. Aircr.
0021-8669,
45
(
2
), pp.
538
545
.
15.
Sotoudeh
,
Z.
,
Hodges
,
D. H.
, and
Chang
,
C. S.
, 2010, “
Validation Studies for Aeroelastic Trim and Stability Analysis of Highly Flexible Aircraft
,”
J. Aircr.
0021-8669,
47
(
4
), pp.
1240
1247
.
16.
Patil
,
M. J.
, and
Hodges
,
D. H.
, 2006, “
Variable-Order Finite Elements for Nonlinear, Intrinsic, Mixed Beam Equations
,”
Proceedings of the 62nd Annual Forum of the American Helicopter Society
, Phoenix, AZ, American Helicopter Society.
17.
Ghorashi
,
M.
, and
Nitzsche
,
F.
, 2009, “
Nonlinear Dynamic Response of an Accelerating Composite Rotor Blade Using Perturbations
,”
J. Mech. Mater. Struct.
1559-3959,
4
(
4
), pp.
693
718
.
18.
Chang
,
C. -S.
, and
Hodges
,
D. H.
, 2007, “
Parametric Studies on Ground Vibration Test Modeling for Highly Flexible Aircraft
,”
J. Aircr.
0021-8669,
44
(
6
), pp.
2049
2059
.
19.
Chang
,
C. -S.
, and
Hodges
,
D. H.
, 2009, “
Vibration Characteristics of Curved Beams
,”
J. Mech. Mater. Struct.
1559-3959,
4
(
4
), pp.
675
692
.
20.
Chang
,
C. -S.
, and
Hodges
,
D. H.
, 2009, “
Stability Studies for Curved Beams
,”
J. Mech. Mater. Struct.
1559-3959,
4
(
7–8
), pp.
1257
1270
.
21.
Gaonkar
,
G. H.
, and
Peters
,
D. A.
, 1980, “
Use of Multiblade Coordinates for Helicopter Flap-Lag Stability With Dynamic Inflow
,”
J. Aircr.
0021-8669,
17
(
2
), pp.
112
118
.
22.
Sotoudeh
,
Z.
,
Hodges
,
D. H.
, and
Chang
,
C. -S.
, 2009, “
Validation Studies for Nonlinear Aeroelastic Trim and Stability of HALE Aircraft
,”
CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics
, Seattle, WA.
23.
Sotoudeh
,
Z.
, and
Hodges
,
D. H.
, 2009, “
Nonlinear Aeroelastic Analysis of Joined-Wing Aircraft With Intrinsic Equations
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
, Palm Springs, CA, AIAA, Paper No. AIAA-2009-2464.
24.
Wright
,
A. D.
,
Smith
,
C. E.
,
Thresher
,
R. W.
, and
Wang
,
J. L. C.
, 1982, “
Vibration Modes of Centrifugally Stiffened Beams
,”
ASME J. Appl. Mech.
0021-8936,
49
(
1
), pp.
197
202
.
25.
Hodges
,
D. H.
, and
Bless
,
R. R.
, 1994, “
Axial Instability of Rotating Rods Revisited
,”
Int. J. Non-Linear Mech.
0020-7462,
29
(
6
), pp.
879
887
.
You do not currently have access to this content.