Analyzing the dynamic behavior of microelectrostatic devices is problematic due to the complexity of the interactions between the electrostatic coupling effect, the fringing field effect, the residual stress, the tensile stress, and the nonlinear electrostatic force. In this study, this problem is resolved by modeling the electrostatic system using a continuous model and solving the resulting governing equation of motion using a hybrid scheme comprising the differential transformation method and the finite difference method. The feasibility of the proposed approach is demonstrated by modeling the dynamic responses of two fixed-fixed microbeams when actuated by a dc voltage. It is shown that the numerical results for the pull-in voltage deviate by no more than 1.74% from those presented in the literature. The hybrid scheme is then applied to examine the nonlinear behavior of one clamped microbeam actuated by a combined dc/ac scheme. The beam displacement is analyzed as a function of both the magnitude and the frequency of the ac voltage. Finally, the actuating conditions, which ensure the stability of the microbeam, are identified by reference to phase portraits and Poincaré maps. Overall, the results presented in this study show that the hybrid differential transformation and finite difference method provides a suitable means of analyzing a wide variety of common electrostatically actuated microstructures.

1.
Bose
,
J. M.
,
Guo
,
Y.
,
Sarihan
,
V.
, and
Lee
,
T.
, 1998, “
Accelerated Life Testing for Micro-Machined Chemical Sensors
,”
IEEE Trans. Reliab.
0018-9529,
47
(
2
), pp.
135
141
.
2.
Zhu
,
Y.
, and
Espinosa
,
H. D.
, 2004, “
Effect of Temperature on Capacitive RF MEMS Switch Performance—A Coupled-Field Analysis
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1270
1279
.
3.
Maluf
,
N. I.
,
Reay
,
R. J.
, and
Kovacs
,
G. T. A.
, 1996, “
High-Voltage Devices and Circuits Fabricated Using Foundry CMOS for Use With Electrostatic MEM Actuators
,”
Sens. Actuators, A
0924-4247,
52
, pp.
187
192
.
4.
Luharuka
,
R.
,
LeBlanc
,
S.
,
Bintoro
,
J. S.
,
Berthelot
,
Y. H.
, and
Hesketh
,
P. J.
, 2008, “
Simulated and Experimental Dynamic Response Characterization of an Electromagnetic Microvalve
,”
Sens. Actuators, A
0924-4247,
143
, pp.
399
408
.
5.
Rezazadeh
,
G.
,
Tahmasebi
,
A.
, and
Zubstov
,
M.
, 2006, “
Application of Piezoelectric Layers in Electrostatic MEM Actuators: Controlling of Pull-In Voltage
,”
Microsyst. Technol.
0946-7076,
12
, pp.
1163
1170
.
6.
Tong
,
P.
, and
Huang
,
W.
, 2002, “
Large Deflection of Thin Plates in Pressure Sensor Applications
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
785
789
.
7.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
, 1967, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron Devices
0018-9383,
14
, pp.
117
133
.
8.
Bernstein
,
D.
,
Guidotti
,
P.
, and
Pelesko
,
J. A.
, 2000, “
Mathematical Analysis of an Electrostatically Actuated MEMS Device
,”
Proceedings of the Modeling and Simulation of Microsystems MSM
, pp.
489
492
.
9.
Hung
,
E. S.
, and
Senturia
,
S. D.
, 1999, “
Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
497
505
.
10.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2002, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
759
766
.
11.
Gang
,
D.
, and
Kai-Tak
,
W.
, 2007, “
Analysis of One-Dimensional and Two-Dimensional Thin Film ‘Pull-In’ Phenomena Under the Influence of an Electrostatic Potential
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
927
934
.
12.
Krylov
,
S.
, 2007, “
Lyapunov Exponents as a Criterion for the Dynamic Pull-In Instability of Electrostatically Actuated Microstructures
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
626
642
.
13.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
211
236
.
14.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2004, “
Dynamic Simulations of a Novel RF MEMS Switch
,”
NSTI-Nanotech
,
2
, pp.
287
290
.
15.
Younis
,
M. I.
, 2001, “
Investigation of the Mechanical Behavior of Microbeam-Based MEMS Devices
,” MS thesis, Virginia Polytechnic Institute and State University.
16.
Chiou
,
J. S.
, and
Tzeng
,
J. R.
, 1996, “
Application of the Taylor Transform to Nonlinear Vibration Problems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
83
87
.
17.
Chen
,
C. L.
, and
Liu
,
Y. C.
, 1998, “
Solution of Two-Boundary-Value Problems Using the Differential Transformation Method
,”
J. Optim. Theory Appl.
0022-3239,
99
, pp.
23
35
.
18.
Chen
,
C. K.
, and
Ho
,
S. H.
, 1996, “
Application of Differential Transformation to Eigenvalue Problem
,”
Appl. Math. Comput.
0096-3003,
79
, pp.
173
188
.
19.
Chen
,
C. K.
, and
Ho
,
S. H.
, 1998, “
Free Vibration Analysis of Non-Uniform Timoshenko Beams Using Differential Transform
,”
Appl. Math. Model.
0307-904X,
22
(
4–5
), pp.
219
234
.
20.
Yu
,
L. -T.
, and
Chen
,
C. -K.
, 1998, “
The Solution of the Blasius Equation by the Differential Transformation Method
,”
Math. Comput. Modell.
0895-7177,
28
, pp.
101
111
.
21.
Yu
,
L. T.
, and
Chen
,
C. K.
, 1999, “
Application of the Hybrid Method to the Transient Thermal Stresses Response in Isotropic Annular Fins
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
340
346
.
22.
Chen
,
C. K.
,
Lai
,
H. Y.
, and
Liu
,
C. C.
, 2009, “
Application of Hybrid Differential Transformation/Finite Difference Method to Nonlinear Analysis of Micro Fixed-Fixed Beam
,”
Microsyst. Technol.
0946-7076,
15
, pp.
813
820
.
23.
Chen
,
C. K.
,
Lai
,
H. Y.
, and
Liu
,
C. C.
, 2009, “
Nonlinear Micro Circular Plate Analysis Using Hybrid Differential Transformation/Finite Difference Method
,”
Comput. Model. Eng. Sci.
1526-1492,
40
(
2
), pp.
155
174
.
24.
Kuo
,
B. L.
, and
Chen
,
C. K.
, 2003, “
Application of the Hybrid Method to the Solution of the Nonlinear Burgers’ Equation
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
926
929
.
25.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
153
163
.
26.
Osterberg
,
P. M.
, and
Senturia
,
S. D.
, 1997, “
M-Test: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
107
118
.
You do not currently have access to this content.