A numerical method for directly obtaining discrete relaxation modulus from static creep tests data is developed for linear viscoelastic asphalt mixtures. To overcome the ill-posedness of interconversion between creep compliance and relaxation modulus, Volterra integral equations of the second kind and L-curve based Tikhonov’s regularization method are used to construct the computational scheme of parameter estimation. A numerical case study is presented to demonstrate the efficiency of the regularization method, which takes into account different step lengths and noise levels. It indicates that the computed results are accurate and robust at different noise levels. Compared with other existing methods, the L-curve based Tikhonov’s regularization method provides the best parameter estimates in dealing with both the numerical case study and the experiment data. The method can be used to extract viscoelastic parameters of asphalt mixtures from creep tests effectively and robustly.

1.
Huang
,
Y. H.
, 1993,
Pavement Analysis and Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Sun
,
L.
, and
Luo
,
F. Q.
, 2008, “
Transient Wave Propagation in Multilayered Viscoelastic Media: Theory, Numerical Computation, and Validation
,”
ASME J. Appl. Mech.
0021-8936,
75
(
3
), p.
031007
.
3.
Tschoegl
,
N. W.
, 1989,
The Phenomenological Theory of Linear Viscoelastic Behaviour
,
Springer-Verlag
,
Berlin
.
4.
Park
,
S. W.
, and
Kim
,
Y. R.
, 1999, “
Interconversion Between Relaxation Modulus and Creep Compliance for Viscoelastic Solids
,”
J. Mater. Civ. Eng.
0899-1561,
11
(
1
), pp.
76
82
.
5.
Mun
,
S.
,
Chehab
,
G. R.
, and
Kim
,
Y. R.
, 2007, “
Determination of Time-Domain Viscoelastic Functions Using Optimized Interconversion Techniques
,”
Road Mater. Pavement Des.
,
8
(
2
), pp.
351
365
.
6.
Kim
,
J.
,
Sholar
,
G. A.
, and
Kim
,
S.
, 2008, “
Determination of Accurate Creep Compliance and Relaxation Modulus at a Single Temperature for Viscoelastic Solids
,”
J. Mater. Civ. Eng.
0899-1561,
20
(
2
), pp.
147
156
.
7.
Christensen
,
R. M.
, 1982,
Theory of Viscoelasticity
,
2nd ed.
,
Academic
,
New York
.
8.
Denby
,
E. F.
, 1975, “
A Note on the Interconversion of Creep, Relaxation and Recovery
,”
Rheol. Acta
0035-4511,
14
(
7
), pp.
591
593
.
9.
Park
,
S. W.
, and
Kim
,
Y. R.
, 2001, “
Fitting Prony-Series Viscoelastic Models With Power-Law Presmoothing
,”
J. Mater. Civ. Eng.
0899-1561,
13
(
1
), pp.
26
32
.
10.
Hopkins
,
I. L.
, and
Hamming
,
R. W.
, 1957, “
On Creep and Relaxation
,”
J. Appl. Phys.
0021-8979,
28
(
8
), pp.
906
909
.
11.
Knoff
,
W. F.
, and
Hopkins
,
I. L.
, 1972, “
An Improved Numerical Interconversion for Creep Compliance and Relaxation Modulus
,”
J. Appl. Polym. Sci.
0021-8995,
16
(
11
), pp.
2963
2972
.
12.
Zhao
,
B.
, 1995, “
Conversion Relations Between Relaxation and Creep
,”
Chinese Journal of Experimental Mechanics
1001-4888,
10
(
2
), pp.
141
144
.
13.
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 1997, “
A Sign Control Method for Fitting and Interconverting Material Functions for Linearly Viscoelastic Solids
,”
Mech. Time-Depend. Mater.
1385-2000,
1
(
1
), pp.
85
108
.
14.
Dooling
,
P. J.
,
Buckley
,
C. P.
, and
Hinduja
,
S.
, 1997, “
An Intermediate Model Method for Obtaining a Discrete Relaxation Spectrum From Creep Data
,”
Rheol. Acta
0035-4511,
36
(
4
), pp.
472
482
.
15.
Park
,
S. W.
, and
Schapery
,
R. A.
, 1999, “
Methods of Interconversion Between Linear Viscoelastic Material Functions. Part I—A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
0020-7683,
36
(
11
), pp.
1653
1675
.
16.
Liu
,
Y.
, 2001, “
A Direct Method for Obtaining Discrete Relaxation Spectra From Creep Data
,”
Rheol. Acta
0035-4511,
40
(
3
), pp.
256
260
.
17.
Hilton
,
H. H.
, 2001, “
Implications and Constraints of Time-Independent Poisson Ratios in Linear Isotropic and Anisotropic Viscoelasticity
,”
J. Elast.
0374-3535,
63
(
3
), pp.
221
251
.
18.
Shtark
,
A.
,
Grosbein
,
H.
,
Sameach
,
G.
, and
Hilton
,
H. H.
, 2007, “
An Alternate Protocol for Determining Viscoelastic Materials Properties Based on Tensile Tests Without the Use of Poisson’s Ratios
,”
ASME
Paper No. IMECE 2007-41068.
19.
Ramkumar
,
D. H. S.
,
Caruthers
,
J. M.
,
Mavridis
,
H.
, and
Shroff
,
R.
, 1997, “
Computation of the Linear Viscoelastic Relaxation Spectrum From Experimental Data
,”
J. Appl. Polym. Sci.
0021-8995,
64
(
11
), pp.
2177
2189
.
20.
Sorvari
,
J.
, and
Malinen
,
M.
, 2007, “
On the Direct Estimation of Creep and Relaxation Functions
,”
Mech. Time-Depend. Mater.
1385-2000,
11
(
2
), pp.
143
157
.
21.
Sorvari
,
J.
, and
Malinen
,
M.
, 2007, “
Numerical Interconversion Between Linear Viscoelastic Material Functions With Regularization
,”
Int. J. Solids Struct.
0020-7683,
44
(
3–4
), pp.
1291
1303
.
22.
Nikonov
,
A.
,
Davies
,
A. R.
, and
Emri
,
I.
, 2005, “
The Determination of Creep and Relaxation Functions From a Single Experiment
,”
J. Rheol.
0148-6055,
49
(
6
), pp.
1193
1211
.
23.
Kress
,
R.
, 1989,
Linear Integral Equations
,
Springer-Verlag
,
Berlin
.
24.
Burden
,
R. L.
, and
Faires
,
J. D.
, 2001,
Numerical Analysis
,
7th ed.
,
PWS-Kent
,
Boston, MA
.
25.
Wang
,
Y. B.
,
Jia
,
X. Z.
, and
Cheng
,
J.
, 2002, “
A Numerical Differentiation Method and Its Application to Reconstruction of Discontinuity
,”
Inverse Probl.
0266-5611,
18
(
6
), pp.
1461
1476
.
26.
Hansen
,
P. C.
, 1992, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
0036-1445,
33
(
4
), pp.
561
580
.
27.
Hansen
,
P. C.
, and
O’Leary
,
D. P.
, 1993, “
The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
14
(
6
), pp.
1487
1503
.
You do not currently have access to this content.