The speedy computation of eigenvalue problems is the key point in structure dynamics. In this paper, by combining transfer matrix method and finite element method, the modified finite element-transfer matrix method and its algorithm for eigenvalue problems are presented. By using this method, the speedy computation of eigenvalue problem of flexible structures can be realized, and the repeated eignvalue problem can be solved simply and conveniently. This method has the low order of system matrix, high computational efficiency, and stability. Formulations of this method, as well as some numerical examples, are given to validate the method.
1.
Zheng
, Zh. Ch.
, 1986, Mechanical Vibration
, Mechanical Technology
, Beijing
, pp. 1
–120
.2.
Rui
, X. T.
, Yun
, L. F.
, Lu
, Y. Q.
, He
, B.
, and Wang
, G. P.
, 2008, Transfer Matrix Method for Multibody System and Its Applications
, Science
, Beijing, China
, pp. 101
–138
.3.
Rao
, S. S.
, 1989, The Finite Element Methods in Engineering
, 2nd ed., Pergamon
, Oxford
, pp. 1
–200
.4.
Smith
, I. M.
, and Griffiths
, D. V.
, 1998, Programming the Finite Element Method
, 3rd ed., Wiley
, Hoboken, NJ
, pp. 1
–400
.5.
Zienkiewicz
, O. C.
, 2008, The Finite Element Method: Its Basis and Fundamentals
, 6th ed., Elsevier
, Singapore
, pp. 1
–200
.6.
Han
, G. C.
, Wu
, Y. H.
, and Zhou
, L.
, 2008, “Vibration Analysis of Rectangular Plates Coupled With Concentrated Masses
,” Journal of Harbin Engineering University
, 29
(12
), pp. 1298
–1303
.7.
Thomas
, A.
, Mehrmann
, V.
, and Watkins
, D.
, 2002, “Structured Eigenvalue Methods for the Computation of Corner Singularities in 3D Anisotropic Elastic Structures
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 191
(39–40
), pp. 4459
–4473
.8.
Ke
, Zh. Q.
, and Li
, Sh.
, 2009, “Analysis of Vibration Properties of Single-Walled Carbon Nanotubes With Finite Element Method
,” Journal of Vibration Engineering
, 22
(5
), pp. 456
–461
.9.
Naseralavi
, M.
, Aryana
, F.
, and Bakhtiari-Nejad
, F.
, 2008, “Analysis of Natural Frequencies for a Laminated Composite Plate With Piezoelectric Patches Using the First and Second Eigenvalue Derivatives
,” International Journal of Engineering, Transactions B: Applications
, 21
(1
), pp. 85
–96
.10.
Edelugo
, S. O.
, 2008, “Application of the Eigenvalue, Finite Element Approach in the Determination of Edge Effects in Laminated Composite Plates
,” J. Adv. Mater.
1070-9789, 40
(1
), pp. 33
–40
.11.
Brinkmeier
, M.
, and Nackenhorst
, U.
, 2008, “An Approach for Large-Scale Gyroscopic Eigenvalue Problems With Application to High-Frequency Response of Rolling Tires
,” Comput. Mech.
0178-7675, 41
(4
), pp. 503
–515
.12.
Da Veiga
, L. B.
, Hakula
, H.
, and Pitkaranta
, J.
, 2008, “Asymptotic and Numerical Analysis of the Eigenvalue Problem for a Clamped Cylindrical Shell
,” Math. Models Meth. Appl. Sci.
0218-2025, 18
(11
), pp. 1983
–2002
.13.
Artioli
, E.
, Da Veiga
, L. B.
, Hakula
, H.
, and Lovadina
, C.
, 2009, “On the Asymptotic Behaviour of Shells of Revolution in Free Vibration
,” Comput. Mech.
0178-7675, 44
(1
), pp. 45
–60
.14.
Liu
, W. J.
, 2005, “Repeated Eigenvalues Problems of Stochastic Structures
,” MS thesis, Wuhan University of Technology, Wuhan, China.15.
Lu
, Y. F.
, 1996, Dynamics of Flexible Multibody Systems
, Higher Education
, Beijing, China
.16.
Dokanish
, M. A.
, 1972, “A New Approach for Plate Vibration: Combination of Transfer Matrix and Finite Element Technique
,” ASME J. Mech. Des.
0161-8458, 94
, pp. 526
–530
.17.
Pestel
, E. C.
, and Leckie
, F. A.
, 1963, Matrix Method in Elastomechanics
, McGraw-Hill
, New York
, pp. 51
–369
.18.
Ohga
, M.
, and Shigematus
, T.
, 1987, “Transient Analysis of Plates by a Combined Finite Element Transfer Matrix Method
,” Comput. Struct.
0045-7949, 26
(4
), pp. 543
–549
.19.
Chen
, Y. H.
, and Xue
, H. Y.
, 1991, “Dynamic Large Deflection Analysis of Structures by a Combined Finite Element Riccati Transfer Matrix Method on a Microcomputer
,” Comput. Struct.
0045-7949, 39
(6
), pp. 699
–703
.20.
Xue
, H. Y.
, 1994, “A Combined Dynamic Finite Element-Riccati Transfer Matrix Method for Solving Non-Linear Eigenproblems of Vibrations
,” Comput. Struct.
0045-7949, 53
(6
), pp. 1257
–1261
.21.
Xue
, H. Y.
, 2003, “A Combined Finite Element-Stiffness Equation Transfer Method for Steady State Vibration Response Analysis of Structures
,” J. Sound Vib.
0022-460X, 265
(4
), pp. 783
–793
.22.
Xue
, H. Y.
, 2002, “An Improved Finite Element Transfer Matrix Method for Free Vibration of Structures
,” Journal of Soochow University (Engineering Science Edition)
, 22
(2
), pp. 28
–33
.23.
Bhutani
, N.
, and Loewy
, R. G.
, 1999, “Combined Finite Element-Transfer Matrix Method
,” J. Sound Vib.
0022-460X, 226
(5
), pp. 1048
–1052
.24.
Degen
, E. E.
, Shephard
, M. S.
, and Loewy
, R. G.
, 1985, “Combined Finite Element-Transfer Matrix Method Based on a Mixed Formulation
,” Comput. Struct.
0045-7949, 20
(1–3
), pp. 173
–180
.25.
Choi
, M. S.
, 2003, “Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method
,” J. Mech. Sci. Technol.
1738-494X, 17
(6
), pp. 805
–815
.26.
Rui
, X. T.
, Yu
, H. L.
, He
, B.
, Lu
, Y. Q.
, Wang
, G. L.
, and Yang
, F. F.
, 2007, “Finite Element Transfer Matrix Method of Multibody System for Naval Gun Vibration Analysis
,” Acta Armamentarii
, 28
(9
), pp. 1036
–1040
.27.
Abbas
, L. K.
, Ma
, L.
, and Rui
, X. T.
, 2010, “Natural Vibrations of Open-Variable Thickness Circular Cylindrical Shells in High Temperature Field
,” J. Aerosp. Eng.
0893-1321, 23
(3
), pp. 205
–210
.28.
Yun
, L. F.
, Rui
, X. T.
, He
, B.
, Tang
, J. J.
, and Lu
, Y. Q.
, 2006, “Transfer Matrix Method for 2-Dimension System
,” Chinese Journal of Theoretical and Applied Mechanics
, 38
(5
), pp. 712
–720
.29.
Rui
, X. T.
, Wang
, G. P.
, and Lu
, Y. Q.
, 2008, “Transfer Matrix Method for Linear Multibody System
,” Multibody Syst. Dyn.
1384-5640, 19
(3
), pp. 179
–207
.30.
Horner
, G. C.
, 1975, “The Riccati Transfer Matrix Method
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.31.
Ellakany
, A. M.
, 2008, “Calculation of Higher Natural Frequencies of Simply Supported Elastic Composite Beams Using Riccati Matrix Method
,” Meccanica
0025-6455, 43
(5
), pp. 523
–532
.32.
Yu
, D. X.
, Duan
, D. G.
, and Zhao
, W.
, 1994, “Riccati Method for Vibration Characteristics Analysis of the Missile
,” Journal of Projectiles, Rockets, Missiles and Guidance
, 2
, pp. 47
–55
.33.
Liu
, B. G.
, 2002, “Perturbation Riccati Transfer Matrix Method for One Dimensional Structure With Parameter Uncertainties and Its Applications
,” Ph.D. thesis, Chongqing University, Chongqing, China.34.
Zeng
, P.
, 2009, Fundamentals of Finite Element Analysis
, Higher Education
, Beijing, China
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.