The speedy computation of eigenvalue problems is the key point in structure dynamics. In this paper, by combining transfer matrix method and finite element method, the modified finite element-transfer matrix method and its algorithm for eigenvalue problems are presented. By using this method, the speedy computation of eigenvalue problem of flexible structures can be realized, and the repeated eignvalue problem can be solved simply and conveniently. This method has the low order of system matrix, high computational efficiency, and stability. Formulations of this method, as well as some numerical examples, are given to validate the method.

1.
Zheng
,
Zh. Ch.
, 1986,
Mechanical Vibration
,
Mechanical Technology
,
Beijing
, pp.
1
120
.
2.
Rui
,
X. T.
,
Yun
,
L. F.
,
Lu
,
Y. Q.
,
He
,
B.
, and
Wang
,
G. P.
, 2008,
Transfer Matrix Method for Multibody System and Its Applications
,
Science
,
Beijing, China
, pp.
101
138
.
3.
Rao
,
S. S.
, 1989,
The Finite Element Methods in Engineering
,
2nd ed.
,
Pergamon
,
Oxford
, pp.
1
200
.
4.
Smith
,
I. M.
, and
Griffiths
,
D. V.
, 1998,
Programming the Finite Element Method
,
3rd ed.
,
Wiley
,
Hoboken, NJ
, pp.
1
400
.
5.
Zienkiewicz
,
O. C.
, 2008,
The Finite Element Method: Its Basis and Fundamentals
,
6th ed.
,
Elsevier
,
Singapore
, pp.
1
200
.
6.
Han
,
G. C.
,
Wu
,
Y. H.
, and
Zhou
,
L.
, 2008, “
Vibration Analysis of Rectangular Plates Coupled With Concentrated Masses
,”
Journal of Harbin Engineering University
,
29
(
12
), pp.
1298
1303
.
7.
Thomas
,
A.
,
Mehrmann
,
V.
, and
Watkins
,
D.
, 2002, “
Structured Eigenvalue Methods for the Computation of Corner Singularities in 3D Anisotropic Elastic Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
39–40
), pp.
4459
4473
.
8.
Ke
,
Zh. Q.
, and
Li
,
Sh.
, 2009, “
Analysis of Vibration Properties of Single-Walled Carbon Nanotubes With Finite Element Method
,”
Journal of Vibration Engineering
,
22
(
5
), pp.
456
461
.
9.
Naseralavi
,
M.
,
Aryana
,
F.
, and
Bakhtiari-Nejad
,
F.
, 2008, “
Analysis of Natural Frequencies for a Laminated Composite Plate With Piezoelectric Patches Using the First and Second Eigenvalue Derivatives
,”
International Journal of Engineering, Transactions B: Applications
,
21
(
1
), pp.
85
96
.
10.
Edelugo
,
S. O.
, 2008, “
Application of the Eigenvalue, Finite Element Approach in the Determination of Edge Effects in Laminated Composite Plates
,”
J. Adv. Mater.
1070-9789,
40
(
1
), pp.
33
40
.
11.
Brinkmeier
,
M.
, and
Nackenhorst
,
U.
, 2008, “
An Approach for Large-Scale Gyroscopic Eigenvalue Problems With Application to High-Frequency Response of Rolling Tires
,”
Comput. Mech.
0178-7675,
41
(
4
), pp.
503
515
.
12.
Da Veiga
,
L. B.
,
Hakula
,
H.
, and
Pitkaranta
,
J.
, 2008, “
Asymptotic and Numerical Analysis of the Eigenvalue Problem for a Clamped Cylindrical Shell
,”
Math. Models Meth. Appl. Sci.
0218-2025,
18
(
11
), pp.
1983
2002
.
13.
Artioli
,
E.
,
Da Veiga
,
L. B.
,
Hakula
,
H.
, and
Lovadina
,
C.
, 2009, “
On the Asymptotic Behaviour of Shells of Revolution in Free Vibration
,”
Comput. Mech.
0178-7675,
44
(
1
), pp.
45
60
.
14.
Liu
,
W. J.
, 2005, “
Repeated Eigenvalues Problems of Stochastic Structures
,” MS thesis, Wuhan University of Technology, Wuhan, China.
15.
Lu
,
Y. F.
, 1996,
Dynamics of Flexible Multibody Systems
,
Higher Education
,
Beijing, China
.
16.
Dokanish
,
M. A.
, 1972, “
A New Approach for Plate Vibration: Combination of Transfer Matrix and Finite Element Technique
,”
ASME J. Mech. Des.
0161-8458,
94
, pp.
526
530
.
17.
Pestel
,
E. C.
, and
Leckie
,
F. A.
, 1963,
Matrix Method in Elastomechanics
,
McGraw-Hill
,
New York
, pp.
51
369
.
18.
Ohga
,
M.
, and
Shigematus
,
T.
, 1987, “
Transient Analysis of Plates by a Combined Finite Element Transfer Matrix Method
,”
Comput. Struct.
0045-7949,
26
(
4
), pp.
543
549
.
19.
Chen
,
Y. H.
, and
Xue
,
H. Y.
, 1991, “
Dynamic Large Deflection Analysis of Structures by a Combined Finite Element Riccati Transfer Matrix Method on a Microcomputer
,”
Comput. Struct.
0045-7949,
39
(
6
), pp.
699
703
.
20.
Xue
,
H. Y.
, 1994, “
A Combined Dynamic Finite Element-Riccati Transfer Matrix Method for Solving Non-Linear Eigenproblems of Vibrations
,”
Comput. Struct.
0045-7949,
53
(
6
), pp.
1257
1261
.
21.
Xue
,
H. Y.
, 2003, “
A Combined Finite Element-Stiffness Equation Transfer Method for Steady State Vibration Response Analysis of Structures
,”
J. Sound Vib.
0022-460X,
265
(
4
), pp.
783
793
.
22.
Xue
,
H. Y.
, 2002, “
An Improved Finite Element Transfer Matrix Method for Free Vibration of Structures
,”
Journal of Soochow University (Engineering Science Edition)
,
22
(
2
), pp.
28
33
.
23.
Bhutani
,
N.
, and
Loewy
,
R. G.
, 1999, “
Combined Finite Element-Transfer Matrix Method
,”
J. Sound Vib.
0022-460X,
226
(
5
), pp.
1048
1052
.
24.
Degen
,
E. E.
,
Shephard
,
M. S.
, and
Loewy
,
R. G.
, 1985, “
Combined Finite Element-Transfer Matrix Method Based on a Mixed Formulation
,”
Comput. Struct.
0045-7949,
20
(
1–3
), pp.
173
180
.
25.
Choi
,
M. S.
, 2003, “
Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method
,”
J. Mech. Sci. Technol.
1738-494X,
17
(
6
), pp.
805
815
.
26.
Rui
,
X. T.
,
Yu
,
H. L.
,
He
,
B.
,
Lu
,
Y. Q.
,
Wang
,
G. L.
, and
Yang
,
F. F.
, 2007, “
Finite Element Transfer Matrix Method of Multibody System for Naval Gun Vibration Analysis
,”
Acta Armamentarii
,
28
(
9
), pp.
1036
1040
.
27.
Abbas
,
L. K.
,
Ma
,
L.
, and
Rui
,
X. T.
, 2010, “
Natural Vibrations of Open-Variable Thickness Circular Cylindrical Shells in High Temperature Field
,”
J. Aerosp. Eng.
0893-1321,
23
(
3
), pp.
205
210
.
28.
Yun
,
L. F.
,
Rui
,
X. T.
,
He
,
B.
,
Tang
,
J. J.
, and
Lu
,
Y. Q.
, 2006, “
Transfer Matrix Method for 2-Dimension System
,”
Chinese Journal of Theoretical and Applied Mechanics
,
38
(
5
), pp.
712
720
.
29.
Rui
,
X. T.
,
Wang
,
G. P.
, and
Lu
,
Y. Q.
, 2008, “
Transfer Matrix Method for Linear Multibody System
,”
Multibody Syst. Dyn.
1384-5640,
19
(
3
), pp.
179
207
.
30.
Horner
,
G. C.
, 1975, “
The Riccati Transfer Matrix Method
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.
31.
Ellakany
,
A. M.
, 2008, “
Calculation of Higher Natural Frequencies of Simply Supported Elastic Composite Beams Using Riccati Matrix Method
,”
Meccanica
0025-6455,
43
(
5
), pp.
523
532
.
32.
Yu
,
D. X.
,
Duan
,
D. G.
, and
Zhao
,
W.
, 1994, “
Riccati Method for Vibration Characteristics Analysis of the Missile
,”
Journal of Projectiles, Rockets, Missiles and Guidance
,
2
, pp.
47
55
.
33.
Liu
,
B. G.
, 2002, “
Perturbation Riccati Transfer Matrix Method for One Dimensional Structure With Parameter Uncertainties and Its Applications
,” Ph.D. thesis, Chongqing University, Chongqing, China.
34.
Zeng
,
P.
, 2009,
Fundamentals of Finite Element Analysis
,
Higher Education
,
Beijing, China
.
You do not currently have access to this content.