A stochastic averaging method for predicting the response of multi-degree-of-freedom quasi-nonintegrable-Hamiltonian systems (nonintegrable-Hamiltonian systems with lightly linear and (or) nonlinear dampings subject to weakly external and (or) parametric excitations of Poisson white noises) is proposed. A one-dimensional averaged generalized Fokker–Planck–Kolmogorov equation for the transition probability density of the Hamiltonian is derived and the probability density of the stationary response of the system is obtained by using the perturbation method. Two examples, two linearly and nonlinearly coupled van der Pol oscillators and two-degree-of-freedom vibro-impact system, are given to illustrate the application and validity of the proposed method.

1.
Tung
,
C. C.
, 1967, “
Random Response of Highway Bridges to Vehicle Loads
,”
J. Eng. Mech.
0733-9399,
93
, pp.
79
94
.
2.
Lin
,
Y. K.
, 1963, “
Application of Non-Stationary Shot Noise in the Study of System Response to Non-Stationary Excitations
,”
ASME J. Appl. Mech.
0021-8936,
30
, pp.
555
558
.
3.
Roberts
,
J. B.
, 1972, “
System Response to Random Impulses
,”
J. Sound Vib.
0022-460X,
24
(
1
), pp.
23
34
.
4.
Grigoriu
,
M.
, 1995, “
Equivalent Linearization for Poisson White-Noise Input
,”
Probab. Eng. Mech.
0266-8920,
10
(
1
), pp.
45
51
.
5.
Proppe
,
C.
, 2002, “
Equivalent Linearization of MDOF Systems Under External Poisson White Noise Excitation
,”
Probab. Eng. Mech.
0266-8920,
17
(
4
), pp.
393
399
.
6.
Proppe
,
C.
, 2003, “
Stochastic Linearization of Dynamical Systems Under Parametric Poisson White Noise Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
38
(
4
), pp.
543
555
.
7.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1992, “
Response Distribution of Nonlinear-Systems Excited by Non-Gaussian Impulsive Noise
,”
Int. J. Non-Linear Mech.
0020-7462,
27
(
6
), pp.
955
967
.
8.
Wu
,
Y.
, and
Zhu
,
W. Q.
, 2008, “
Stationary Response of MDOF Dissipated Hamiltonian Systems to Poisson White Noises
,”
ASME J. Appl. Mech.
0021-8936,
75
(
4
), p.
044502
.
9.
Wu
,
Y.
, and
Zhu
,
W. Q.
, 2008, “
Stationary Response of Multi-Degree-of-Freedom Vibro-Impact Systems to Poisson White Noises
,”
Phys. Lett. A
0375-9601,
372
(
5
), pp.
623
630
.
10.
Köylüolu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Çakmak
,
A. Ş.
, 1995, “
Fast Cell-to-Cell Mapping (Path Integration) for Nonlinear White Noise and Poisson Driven Systems
,”
Struct. Safety
0167-4730,
17
(
3
), pp.
151
165
.
11.
Di Paola
,
M.
, and
Santoro
,
R.
, 2008, “
Path Integral Solution for Non-Linear System Enforced by Poisson White Noise
,”
Probab. Eng. Mech.
0266-8920,
23
(
2–3
), pp.
164
169
.
12.
Wu
,
Y.
, and
Zhu
,
W. Q.
, 2008, “
Stochastic Analysis of a Pulse-Type Prey-Predator Model
,”
Phys. Rev. E
1063-651X,
77
(
4
), p.
041911
.
13.
Di Paola
,
M.
, and
Santoro
,
R.
, 2008, “
Non-Linear Systems Under Poisson White Noise Handled by Path Integral Solution
,”
J. Vib. Control
1077-5463,
14
(
1–2
), pp.
35
49
.
14.
Wojtkiewicz
,
S. F.
,
Johnson
,
E. A.
,
Bergman
,
L. A.
,
Grigoriu
,
M.
, and
Spencer
,
B. F.
, 1999, “
Response of Stochastic Dynamical Systems Driven by Additive Gaussian and Poisson White Noise: Solution of a Forward Generalized Kolmogorov Equation by a Spectral Finite Difference Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
(
1–4
), pp.
73
89
.
15.
Iwankiewicz
,
R.
, and
Nielsen
,
S. R. K.
, 1992, “
Dynamic Response of Non-Linear Systems to Poisson-Distributed Random Impulses
,”
J. Sound Vib.
0022-460X,
156
(
3
), pp.
407
423
.
16.
Di Paola
,
M.
, and
Falsone
,
G.
, 1993, “
Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
141
148
.
17.
Di Paola
,
M.
, and
Falsone
,
G.
, 1993, “
Ito and Stratonovich Integrals for Delta-Correlated Processes
,”
Probab. Eng. Mech.
0266-8920,
8
, pp.
197
208
.
18.
Hu
,
S. L. J.
, 1993, “
Responses of Dynamic-Systems Excited by Non-Gaussian Pulse Processes
,”
J. Eng. Mech.
0733-9399,
119
(
9
), pp.
1818
1827
.
19.
Hu
,
S. L. J.
, 1995, “
Parametric Random Vibrations Under Non-Gaussian Delta-Correlated Processes
,”
J. Eng. Mech.
0733-9399,
121
(
12
), pp.
1366
1371
.
20.
Grigoriu
,
M.
, 1996, “
A Partial Differential Equation for the Characteristic Function of the Response of Non-Linear Systems to Additive Poisson White Noise
,”
J. Sound Vib.
0022-460X,
198
(
2
), pp.
193
202
.
21.
Grigoriu
,
M.
, 2004, “
Characteristic Function Equations for the State of Dynamic Systems With Gaussian, Poisson, and Levy White Noise
,”
Probab. Eng. Mech.
0266-8920,
19
(
4
), pp.
449
461
.
22.
Grigoriu
,
M.
, 1996, “
Response of Dynamic Systems to Poisson White Noise
,”
J. Sound Vib.
0022-460X,
195
(
3
), pp.
375
389
.
23.
Roberts
,
J. B.
, and
Spanos
,
P. D.
, 1986, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
0020-7462,
21
, pp.
111
134
.
24.
Zhu
,
W. Q.
, 1988, “
Stochastic Averaging Methods in Random Vibration
,”
Appl. Mech. Rev.
0003-6900,
41
(
5
), pp.
189
199
.
25.
Zhu
,
W. Q.
, 1996, “
Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration
,”
Appl. Mech. Rev.
0003-6900,
49
(
10S
), pp.
S72
S80
.
26.
Zhu
,
W. Q.
, 2006, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
Appl. Mech. Rev.
0003-6900,
59
(
4
), pp.
230
248
.
27.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2009, “
Stochastic Averaging of Quasi-Generalized Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
44
, pp.
71
80
.
28.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
, 1997, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
157
164
.
29.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Yang
,
Y. Q.
, 1997, “
Stochastic Averaging of Quasi-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
975
984
.
30.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
, 2002, “
Stochastic Averaging and Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
419
437
.
31.
Huang
,
Z. L.
,
Liu
,
Z. H.
, and
Zhu
,
W. Q.
, 2004, “
Stationary Response of Multi-Degree-of-Freedom Vibro-Impact Systems Under White Noise Excitations
,”
J. Sound Vib.
0022-460X,
275
, pp.
223
240
.
32.
Lin
,
Y. K.
, 1967,
Probabilistic Theory of Structural Dynamics
,
McGraw-Hill
,
New York
.
33.
Siegel
,
C. L.
, and
Morser
,
J. K.
, 1971,
Lecture on Celestical Mechanics
,
Springer-Verlag
,
New York
.
34.
Binney
,
J. J.
,
Dowrick
,
N. J.
,
Fisher
,
A. J.
, and
Newman
,
M. E. J.
, 1992,
The Theory of Critical Phenomena, an Introduction to the Renormalization Group
,
Clarendon
,
Oxford, U.K
.
You do not currently have access to this content.