The residual stress distribution in plasma-sprayed zirconia thermal barrier coatings subjected to cyclic thermal gradient testing was evaluated using Raman piezospectroscopy and finite element computation. The thermal gradient testing (approximately 440°C/mm at temperature), consisted of repeated front-side heating with a flame and constant cooling of the back-side of the substrate either with front-side radiative cooling only or with additional forced air cooling between the heating cycles. The coatings exhibited characteristic “mud-cracking” with the average crack spacing dependent on the cooling treatment. This is consistent with finite element calculations and Raman spectroscopy measurements in which the sudden drop in coating surface temperature on initial cooling leads to a large biaxial tension at the surface. The key to proper interpretation of the Raman shifts is that the stress-free Raman peaks need to be corrected for shifts associated with the evolution of the metastable tetragonal phase with aging.

1.
Clarke
,
D. R.
, and
Levi
,
C. G.
, 2003, “
Materials Designs for the Next Generation Thermal Barrier Coatings
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
383
417
.
2.
Levi
,
C. G.
, 2004, “
Emerging Materials and Processes for Thermal Barrier Systems
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
8
, pp.
77
91
.
3.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
, 2001, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
505
553
.
4.
Christensen
,
R. J.
,
Lipkin
,
D. M.
,
Clarke
,
D. R.
, and
Murphy
,
K. S.
, 1996, “
Nondestructive Evaluation of the Oxidation Stresses Through Thermal Barrier Coatings Using Cr3+ Piezospectroscopy
,”
Appl. Phys. Lett.
0003-6951,
69
, pp.
3754
3756
.
5.
Paton
,
N. E.
,
Murphy
,
K. S.
, and
Clarke
,
D. R.
, 2000, “
Thermal Barrier Coating Stress Measurement
,” U.S. Patent No. 6,072,568.
6.
Gell
,
M.
,
Sridharan
,
S.
,
Wen
,
M.
, and
Jordan
,
E. H.
, 2004, “
Photoluminescence Piezospectroscopy: A Multi-Purpose Quality Control and Ndi Technique for Thermal Barrier Coatings
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
1
(
4
), pp.
316
329
.
7.
Evans
,
A. G.
, and
Hutchinson
,
J. W.
, 2007, “
The Mechanics of Coating Delamination in Thermal Gradients
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
7905
7916
.
8.
Scardi
,
P.
,
Leoni
,
M.
, and
Bertamini
,
L.
, 1995, “
Influence of Phase Stability on the Residual Stress in Partially Stabilized Zirconia TBC Produced by Plasma Spray
,”
Surf. Coat. Technol.
0257-8972,
76–77
, pp.
106
112
.
9.
Levit
,
M.
,
Grimberg
,
I.
, and
Weiss
,
B. -Z.
, 1996, “
Residual Stresses in Ceramic Plasma-Sprayed Thermal Barrier Coatings: Measurement and Calculation
,”
Mater. Sci. Eng., A
0921-5093,
206
, pp.
30
38
.
10.
Kesler
,
O.
,
Matejicek
,
J.
,
Sampath
,
S.
,
Suresh
,
S.
,
Gnaeupel-Herold
,
T.
,
Brand
,
P. C.
, and
Prask
,
H. J.
, 1998, “
Measurement of Residual Stress in Plasma-Sprayed Metallic, Ceramic and Composite Coatings
,”
Mater. Sci. Eng., A
0921-5093,
257
, pp.
215
224
.
11.
Matejicek
,
J.
,
Sampath
,
S.
,
Brand
,
P. C.
, and
Prask
,
H. J.
, 1999, “
Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings
,”
Acta Mater.
1359-6454,
47
, pp.
607
617
.
12.
Hobbs
,
M. K.
, and
Reiter
,
H.
, 1988, “
Residual Stresses in ZrO2-8%Y2O3 Plasma-Sprayed Thermal Barrier Coating
,”
Surf. Coat. Technol.
0257-8972,
34
, pp.
33
42
.
13.
Teixeira
,
V.
,
Andritschky
,
M.
,
Fischer
,
W.
,
Buchkremer
,
H. P.
, and
Stover
,
D.
, 1999, “
Analysis of Residual Stresses in Thermal Barrier Coatings
,”
J. Mater. Process. Technol.
0924-0136,
92–93
, pp.
209
216
.
14.
Greving
,
D. J.
,
Rybicki
,
E. F.
, and
Shadley
,
J. R.
, 1994, “
Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method
,”
J. Therm. Spray Technol.
1059-9630,
3
, pp.
379
388
.
15.
Lughi
,
V.
, and
Clarke
,
D. R.
, 2005, “
Transformation of Electron-Beam Physical Vapor-Deposited 8 wt % Yttria-Stabilized Zirconia Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
0002-7820,
88
, pp.
2552
2558
.
16.
Traeger
,
F.
,
Vassen
,
R.
,
Rauwald
,
K.
, and
Stover
,
D.
, 2003, “
Thermal Cycling Setup for Testing Thermal Barrier Coatings
,”
Adv. Eng. Mater.
1438-1656,
5
, pp.
429
432
.
17.
Portinha
,
A.
,
Teixeira
,
V.
,
Carneiroa
,
J.
,
Beghi
,
M. G.
,
Bottani
,
C. E.
,
Franco
,
N.
,
Vassen
,
R.
,
Stover
,
D.
, and
Sequeira
,
A. D.
, 2004, “
Residual Stresses and Elastic Modulus of Thermal Barrier Coatings Graded in Porosity
,”
Surf. Coat. Technol.
0257-8972,
188–189
, pp.
120
128
.
18.
Tomimatsu
,
T.
,
Kagawa
,
Y.
, and
Zhu
,
S. J.
, 2003, “
Residual Stress Distribution in Electron Beam-Physical Vapor Deposited ZrO2 Thermal Barrier Coating Layer by Raman Spectroscopy
,”
Metall. Mater. Trans. A
1073-5623,
34
, pp.
1739
1741
.
19.
Tanaka
,
M.
,
Hasegawa
,
M.
,
Dericioglu
,
A. F.
, and
Kagawa
,
Y.
, 2006, “
Measurement of Residual Stress in Air Plasma-Sprayed Y2O3–ZrO2 Thermal Barrier Coating System Using Micro-Raman Spectroscopy
,”
Mater. Sci. Eng., A
0921-5093,
419
, pp.
262
268
.
20.
Limarga
,
A. M.
, and
Clarke
,
D. R.
, 2007, “
Piezo-Spectroscopic Coefficients of Tetragonal-Prime Yttria-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
0002-7820,
90
, pp.
1272
1275
.
21.
Ahrens
,
M.
,
Lampenscherf
,
S.
,
Vassen
,
R.
, and
Stover
,
D.
, 2004, “
Sintering and Creep Processes in Plasma-Sprayed TBCs
,”
J. Therm. Spray Technol.
1059-9630,
13
, pp.
432
442
.
22.
Schwarzer
,
J.
, and
Vohringer
,
O.
, 2003, “
High Temperature Deformation Behavior of the Bondcoat Alloy PWA 1370
,”
Adv. Eng. Mater.
1438-1656,
5
, pp.
490
493
.
23.
Brindley
,
W. J.
, and
Whittenberger
,
J. D.
, 1993, “
Stress Relaxation of Low Pressure Plasma-Sprayed Nicraly Alloys
,”
Mater. Sci. Eng., A
0921-5093,
163
, pp.
33
41
.
24.
Demasi
,
J. T.
,
Sheffler
,
K. D.
, and
Ortiz
,
M.
, 1989, “
Thermal Barrier Coating Life Prediction Model Development
,”
NASA
, Technical Report No. 182230, Cleveland, OH.
25.
Bednarz
,
P.
, 2006, “
Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems
,” Ph.D. thesis, Forschungszentrum Julich GmbH, Julich.
26.
Busso
,
E. P.
,
Qian
,
Z. Q.
,
Taylor
,
M. P.
, and
Evans
,
H. E.
, 2009, “
The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems
,”
Acta Mater.
1359-6454,
57
, pp.
2349
2361
.
27.
Vaßen
,
R.
,
Kerkhoff
,
G.
, and
Stover
,
D.
, 2001, “
Development of Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
0921-5093,
303
, pp.
100
109
.
28.
Limarga
,
A. M.
,
Iveland
,
J.
,
Gentleman
,
M. M.
,
Lipkin
,
D. M.
, and
Clarke
,
D. R.
, unpublished.
29.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
, 2000, “
Crack Patterns in Thin Films
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1107
1131
.
30.
Kramer
,
S.
,
Faulhaber
,
S.
,
Chambers
,
M.
,
Clarke
,
D. R.
,
Levi
,
C. G.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2008, “
Mechanisms of Cracking and Delamination Within Thick Thermal Barrier Systems in Aero-Engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration
,”
Mater. Sci. Eng., A
0921-5093,
490
, pp.
26
35
.
This content is only available via PDF.
You do not currently have access to this content.