This work introduces, for the first time, a formal approach to the estimation of characteristic values of differential and other related expressions in the scaling of engineering problems. The methodology introduced aims at overcoming the inability of the traditional approach to match the exact solution of asymptotic cases. This limitation of the traditional approach often leaves in doubt whether the scaling laws obtained actually represent the desired phenomena. The formal approach presented yields estimates with smaller error than traditional approaches; these improved estimates converge to the exact solution in simple asymptotic cases and do not diverge from the exact solution in cases in which the error of traditional approaches is unbounded. The significance of this contribution is that it extends the range of applicability of scaling estimates to problems for which traditional approaches were deemed unreliable, for example, cases in which the curvature of functions is large, or complex cases in which the accumulation of estimation errors exceeds reasonable limits. This research is part of a larger effort towards a computational implementation of scaling, and it is especially valuable for approximating multicoupled, multiphysics problems in continuum mechanics (e.g., coupled heat transfer, fluid flow, and electromagnetics) that are often difficult to analyze numerically or empirically.

1.
Fourier
,
J. B.
, 1822,
Théorie Analytique de la Chaleur
,
F. Didot
,
Paris
.
2.
Maxwell
,
J. C.
, 1871, “
Remarks on the Mathematical Classification of Physical Quantities
,”
Proc. London Math. Soc.
0024-6115,
3
(
34
), pp.
224
233
.
3.
Rayleigh
,
J. W. S.
, 1877,
The Theory of Sound
,
MacMillan
,
London
.
4.
Buckingham
,
E.
, 1914, “
On Physically Similar Systems: Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
0096-8250,
4
(
4
), pp.
345
376
.
5.
Tolman
,
R. C.
, 1914, “
The Principle of Similitude
,”
Phys. Rev.
0096-8250,
3
(
4
), pp.
244
255
.
6.
Bridgman
,
P. W.
, 1916, “
Tolman’s Principle of Similitude
,”
Phys. Rev.
0096-8250,
8
(
4
), pp.
423
431
.
7.
Bridgman
,
P. W.
, 1922,
Dimensional Analysis
,
1st ed.
,
Yale University
,
New Haven, CT
.
8.
Dantzig
,
J. A.
, and
Tucker
,
C. L.
, 2001,
Modeling in Materials Processing
,
Cambridge University Press
,
Cambridge, England
.
9.
Kou
,
S.
, 1996,
Transport Phenomena and Materials Processing
,
Wiley
,
New York
.
10.
Geiger
,
G. H.
, and
Poirier
,
D. R.
, 1973, “
Transport Phenomena in Metallurgy
,”
Addison-Wesley Series in Metallurgy and Materials
,
Addison-Wesley
,
Reading, MA.
11.
Szekely
,
J.
, and
Themelis
,
N. J.
, 1971,
Rate Phenomena in Process Metallurgy
,
Wiley
,
New York
.
12.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
13.
Chen
,
M. M.
, 1990, “
Scales, Similitude, and Asymptotic Considerations in Convective Heat Transfer
,”
Annual Review of Heat Transfer
,
1st ed.
,
C. L.
Tien
, ed.,
Hemisphere
,
New York
, Vol.
3
, pp.
233
291
.
14.
Kline
,
S. J.
, 1986,
Similitude and Approximation Theory
,
Springer-Verlag
,
New York
.
15.
Sedov
,
L. I.
, 1959,
Similarity and Dimensional Methods in Mechanics
,
4th ed.
,
Academic
,
New York
.
16.
Krantz
,
W. B.
, 2007,
Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation
,
Wiley
,
Hoboken, NJ
.
17.
Ruckenstein
,
E.
, 2003, “
Transfer Coefficients in Complex Cases by Scaling the Transport Equations
,”
Ind. Eng. Chem. Res.
0888-5885,
42
(
12
), pp.
2525
2529
.
18.
Sides
,
P. J.
, 2002, “
Scaling of Differential Equations. Analysis of the Fourth Kind
,”
Chem. Eng. Educ.
0009-2479,
36
(
3
), pp.
232
235
.
19.
Deen
,
W. M.
, 1998,
Analysis of Transport Phenomena
,
Oxford University Press
,
New York
.
20.
Astarita
,
G.
, 1997, “
Dimensional Analysis, Scaling, and Orders of Magnitude
,”
Chem. Eng. Sci.
0009-2509,
52
(
24
), pp.
4681
4698
.
21.
Zlokarnik
,
M.
, 1991,
Dimensional Analysis and Scale-up in Chemical Engineering
,
Springer-Verlag
,
Berlin
.
22.
Ruckenstein
,
E.
, 1987, “
Analysis of Transport Phenomena Using Scaling and Physical Models
,”
Adv. Chem. Eng.
0065-2377,
13
, pp.
11
112
.
23.
Denn
,
M. M.
, 1980,
Process Fluid Mechanics
,
1st ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Aris
,
R.
, 1976, “
How to Get the Most Out of an Equation Without Really Trying
,”
Chem. Eng. Educ.
0009-2479,
10
(
3
), pp.
114
124
.
25.
Brown
,
J. H.
and
West
,
G. B.
, 2000,
Scaling in Biology
,
Oxford University Press
,
New York
.
26.
Calder
,
W. A.
, 1996,
Size, Function, and Life History
,
Dover
,
New York
.
27.
Schmidt-Nielsen
,
K.
, 1984,
Scaling, Why Is Animal Size so Important?
,
Cambridge University Press
,
Cambridge, New York
.
28.
McMahon
,
T. A.
, and
Bonner
,
J. T.
, 1983,
On Size and Life, Scientific American Library
,
W. H. Freeman
,
New York
.
29.
White
,
R. B.
, 2005,
Asymptotic Analysis of Differential Equations
,
Imperial College Press
,
London
.
30.
Barenblatt
,
G. I.
, 2003,
Scaling, Cambridge Texts in Applied Mathematics
,
Cambridge University Press
,
Cambridge, New York
.
31.
Sachdev
,
P. L.
, 2000, “
Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems
,”
Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics; 113
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
32.
Fowler
,
A. C.
, 1997,
Mathematical Models in the Applied Sciences, Cambridge Texts in Applied Mathematics
,
Cambridge University Press
,
Cambridge, New York
.
33.
Barenblatt
,
G. I.
, 1996, “
Scaling, Self-Similarity, and Intermediate Asymptotics
,”
Cambridge Texts in Applied Mathematics
,
1st ed.
,
Cambridge University Press
,
Cambridge, New York
.
34.
Bender
,
C. M.
, and
Orszag
,
S. A.
, 1978, “
Advanced Mathematical Methods for Scientists and Engineers
,” (
International Series in Pure and Applied Mathematics
),
1st ed.
,
McGraw-Hill
,
New York
.
35.
Lin
,
C. C.
, and
Segel
,
L. A.
, 1974,
Mathematics Applied to Deterministic Problems in the Natural Sciences
,
Macmillan
,
New York
.
36.
Segel
,
L. A.
, 1972, “
Simplification and Scaling
,”
SIAM Rev.
0036-1445,
14
(
4
), pp.
547
571
.
37.
Kruskal
,
M. D.
, 1963, “
Asymptotology
,”
Mathematical Models in Physical Sciences
,
Prentice-Hall
,
Notre Dame, IN
, pp.
17
48
.
38.
Friedrichs
,
K. O.
, 1955, “
Asymptotic Phenomena in Mathematical Physics
,”
Bull. Am. Math. Soc.
0002-9904,
61
, pp.
485
504
.
39.
Dovi
,
V. G.
,
Reverberi
,
A. P.
,
Maga
,
L.
, and
Demarchi
,
G.
, 1991, “
Improving the Statistical Accuracy of Dimensional Analysis Correlations for Precise Coefficient Estimation and Optimal-Design of Experiments
,”
Int. Commun. Heat Mass Transfer
0735-1933,
18
(
4
), pp.
581
590
.
40.
Li
,
C. C.
, and
Lee
,
Y. C.
, 1990, “
A Statistical Procedure for Model-Building in Dimensional Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
7
), pp.
1566
1567
.
41.
Washio
,
T.
, and
Motoda
,
H.
, 1998, “
Discovery of First-Principle Equations Based on Scale-Type-Based and Data-Driven Reasoning
,”
Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
0218-4885,
10
(
7
), pp.
403
411
.
42.
Kokar
,
M. M.
, 1981, “
A Procedure of Identification of Laws in Empirical Sciences
,”
Syst. Sci.
,
7
(
1
), pp.
32
41
.
43.
Mendez
,
P. F.
, and
Ordonez
,
F.
, 2005, “
Scaling Laws From Statistical Data and Dimensional Analysis
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
648
657
.
44.
Mendez
,
P. F.
, 1999, “
Order of Magnitude Scaling of Complex Engineering Problems, and Its Application to High Productivity Arc Welding
,”
Doctor of Philosophy
,
MIT
,
Cambridge, MA
.
45.
Dewar
,
R. L.
, 2002, “
Asymptotology—A Cautionary Tale
,”
ANZIAM J.
1445-8735,
44
, pp.
33
40
.
46.
Riley
,
N.
, 1976, “
A Note on Simplification and Scaling
,”
Proc. Edinb. Math. Soc.
0013-0915,
20
(
01
), pp.
63
67
.
47.
Ruark
,
A.
, 1935, “
Inspectional Analysis: A Method Which Supplements Dimensional Analysis
,”
J. N. C Acad. Sci.
,
51
, pp.
127
133
.
48.
Mendez
,
P. F.
, 2006, “
Advanced Scaling Techniques for the Modeling of Materials Processing
,”
Proceedings of the Sohn Symposium
, San Diego, CA, Vol.
7
, pp.
393
404
.
49.
Yip
,
K. M. K.
, 1996, “
Model Simplification by Asymptotic Order of Magnitude Reasoning
,”
Artif. Intell.
0004-3702,
80
(
2
), pp.
309
348
.
50.
Bruckner
,
S.
, and
Rudolph
,
S.
, 2001, “
Knowledge Discovery in Scientific Data Using Hierarchical Modeling in Dimensional Analysis
,”
Proceedings of the SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools, and Technology
, Orlando, FL, Vol.
4384
, pp.
208
217
.
51.
Butterfield
,
R.
, 1999, “
Dimensional Analysis for Geotechnical Engineers
,”
Geotechnique
0016-8505,
49
(
3
), pp.
357
366
.
52.
Chen
,
W. -K.
, 1971, “
Algebraic Theory of Dimensional Analysis
,”
J. Franklin Inst.
0016-0032,
292
(
6
), pp.
403
422
.
53.
Howard
,
J. C.
, 1971, “
Automatic Problem Formulation Using the Metric Properties of Space
,”
J. Franklin Inst.
0016-0032,
292
(
6
), pp.
535
543
.
54.
Mavrovouniotis
,
M. L.
, 1997, “
A Belief Framework for Order-of-Magnitude Reasoning and Other Qualitative Relations
,”
Artif. Intell. Eng.
0954-1810,
11
(
2
), pp.
121
134
.
55.
Weld
,
D. S.
, and
de Kleer
,
J.
, 1990,
Qualitative Reasoning About Physical Systems
,
Morgan Kaufmann Publishers, Inc.
,
San Mateo, CA
.
56.
Weld
,
D. S.
, 1990, “
Exaggeration
,”
Artif. Intell.
0004-3702,
43
(
3
), pp.
311
368
.
57.
Weld
,
D. S.
, 1988, “
Comparative Analysis
,”
Artif. Intell.
0004-3702,
36
, pp.
333
373
.
58.
Mavrovouniotis
,
M. L.
, and
Stephanopoulos
,
G.
, 1988, “
Formal Order-of-Magnitude Reasoning in Process Engineering
,”
Comput. Chem. Eng.
0098-1354,
12
(
9–10
), pp.
867
880
.
59.
Raiman
,
O.
, 1986, “
Order of Magnitude Reasoning
,”
Proceedings of the AAAI-86, Fifth National Conference on Artificial Intelligence
, Philadelphia, PA, pp.
100
104
.
60.
de Kleer
,
J.
, and
Bobrow
,
D. G.
, 1984, “
Qualitative Reasoning With Higher Order Derivatives
,”
Proceedings of the AAAI-84
, Austin, TX, pp.
86
91
.
61.
Na
,
T. Y.
, and
Hansen
,
A. G.
, 1971, “
Similarity Analysis of Differential Equations by Lie Group
,”
J. Franklin Inst.
0016-0032,
292
(
6
), pp.
471
489
.
62.
Szirtes
,
T.
, and
Rzsa
,
P.
, 1997,
Applied Dimensional Analysis and Modeling
,
McGraw-Hill
,
New York
.
63.
Kasprzak
,
W.
,
Lysik
,
B.
, and
Rybaczuk
,
M.
, 1990,
Dimensional Analysis in the Identification of Mathematical Models
,
World Scientific
,
Singapore
.
64.
Drobot
,
S.
, 1953, “
On the Foundations of Dimensional Analysis
,”
Stud. Math.
0039-3223,
14
, pp.
84
89
.
65.
Langhaar
,
H. L.
, 1951,
Dimensional Analysis and Theory of Models
,
1st ed.
,
Wiley
,
New York
.
66.
Symon
,
K. R.
, 1971,
Mechanics
,
3rd ed.
,
Addison-Wesley
,
Reading, MA
.
67.
de Bruijn
,
N. G.
, 1981,
Asymptotic Methods in Analysis
,
Dover
,
New York
.
You do not currently have access to this content.