The methods of missile formation reconfiguration optimal trajectory generating and control are described. Given a formation of intelligence missiles, an initial configuration, a final configuration, a time for reconfiguration, and a set of inter- and intramissile constraint, reconfiguration trajectory generation and control problems focused on determining and controlling a normal input trajectory for each intelligence missile such that every intelligence missile can fly as the expected optimal trajectory while satisfying all the sets of constraints. In this paper, solving the optimal trajectory generation problem by posing the input as a polynomial form and analyzing the symbolic reachability computation based on the quantifier elimination theory is of interest. A combination of proportion and differential control with the position error is used in the design of the missile formation controller used to track the optimal transfer trajectory. Simulations by the package REGLOG demonstrate that the optimal transfer trajectory generation process is feasible; the controller is capable of tracking the optimal transfer trajectory.

1.
Shiyi
,
G.
, 2004, “
Some Discussions About Smart Missile
,”
Tactical Missile Technology
, Issue
4
, pp.
01
07
, in Chinese.
2.
Li
,
S. -M.
,
Boskovic
,
J. D.
, and
Mehra
,
R. K.
, 2001, “
A Global Stable Formation Flight Controller in Two Dimensions
,”
Proceedings of the AIAA GNC
, Montreal, Canada.
3.
Desai
,
J. P.
,
Ostrowski
,
J. P.
, and
Kurnar
,
V.
, 1999, “
Control of Changes in Formation for a Team of Mobile Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Detroit, MI, May, pp.
1556
1561
.
4.
Brock
,
D. L.
,
Montana
,
D. J.
, and
Ceranowicz
,
A. Z.
, 1992, “
Coordination and Control of Multiple Autonomous Vehicles
,”
Proceedings of the 1992 IEEE International Conference on Robotics and Automation
, Nice, France, pp.
2725
2730
.
5.
Zelinski
,
S.
,
Koo
,
T. J.
, and
Sastry
,
S.
, 2003, “
Optimization-Based Formation Reconfiguration Planning for Autonomous Vehicles
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation
,” Taipei, Taiwan, Sept. 14–19.
6.
Lafferriere
,
G.
,
Pappas
,
G. J.
, and
Yovine
,
S.
, 2001, “
Symbolic Reachability Computations for Families of Linear Vector Fields
,”
J. Symb. Comput.
0747-7171,
32
(
3
), pp.
231
253
.
7.
Pachter
,
M.
,
D’Azzo
,
J. J.
, and
Dargan
,
J. L.
, 1994, “
Automatic Formation Flight Control
,”
J. Guid. Control Dyn.
0731-5090,
17
(
6
), pp.
1380
1383
.
8.
McCamish
,
S.
,
Pachter
,
M.
, and
D’Azzo
,
J. J.
, 1996, “
Optimal Formation Flight Control
,”
AIAA Guidance, Navigation and Control Conference
, San Diego, CA, Jul. 29–31, pp.
3868
3880
.
9.
Li
,
S. -M.
,
Boskovic
,
J. D.
, and
Mehra
,
R. K.
, 2001, “
Globally Stable Automatic Formation Flight Control in Two Dimensions
,”
AIAA Guidance, Navigation and Control Conference
, Montreal, Canada, Aug. 6–9, pp.
4046
4053
.
10.
Boskovic
,
J. D.
,
Li
,
S. -M.
, and
Mehra
,
R. K.
, 2001, “
Semi-Globally Stable Formation Flight Control Design in Three Dimensions
,”
Proceedings of the 40th IEEE Conference on Decision and Control
, FL, pp.
1059
1064
.
11.
Leonard
,
N. E.
, and
Fiorelli
,
E.
, 2001, “
Virtual Leaders, Artificial Potentials and Coordinated Control of Groups
,”
Proceedings of the IEEE Conference on Decision and Control
, Orlando, FL, December, pp.
2968
2973
.
12.
Wei
,
C.
,
Cui
,
N.
, and
Guo
,
J.
, “
Research on Missile Formation Flight Control System
,”
Systems Engineering and Electronics
, in press, in Chinese.
13.
Tarski
,
A.
, 1951,
A Decision Method for Elementary Algebra and Geometry
,
2nd ed.
,
University of California Press
,
Berkeley
.
14.
Cui
,
N.
,
Wei
,
C.
,
Guo
,
J.
, and
Zhao
,
B.
, 2009, “
Research on Missile Formation Control System
,”
IEEE International Conference on Mechatronics and Automation
, Changchun, Jilin, Aug, 12.
15.
Dolzmann
,
A.
,
Seidl
,
A.
, and
Sturm
,
T.
, 2006, Redlog User Manual, Nov. 24.
You do not currently have access to this content.