Making use of an iterated homogenization procedure in finite elasticity, an exact and explicit result is derived for the macroscopic response of Neo-Hookean solids reinforced by a random and isotropic distribution of rigid particles. The key theoretical and practical features of the result are discussed in light of comparisons with recent approximations and full-field simulations.

1.
Hill
,
R.
, 1972, “
On Constitutive Macrovariables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London
0370-1662,
326
, pp.
131
147
.
2.
deBotton
,
G.
, 2005, “
Transversely Isotropic Sequentially Laminated Composites in Finite Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1334
1361
.
3.
Idiart
,
M. I.
, 2008, “
Modeling the Macroscopic Behavior of Two-Phase Nonlinear Composites by Infinite-Rank Laminates
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2599
2617
.
4.
Idiart
,
M. I.
, and
Lopez-Pamies
,
O.
, 2009, “
Two-Phase Hyperelastic Composites: A Realizable Homogenization Constitutive Theory
,” in preparation.
5.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2006, “
On the Overall Behavior, Microstructure Evolution, and Macroscopic Stability in Reinforced Rubbers at Large Deformations: I—Theory
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
807
830
.
6.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2006, “
On the Overall Behavior, Microstructure Evolution, and Macroscopic Stability in Reinforced Rubbers at Large Deformations: II—Application to Cylindrical Fibers
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
831
863
.
7.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of Various Physical Constants in Heterogeneous Substances. I. Dielectric Constants and Conductivity of Composites From Isotropic Substances)
,”
Ann. Phys.
0003-3804,
416
, pp.
636
664
.
8.
Roscoe
,
R.
, 1952, “
The Viscosity of Suspensions of Rigid Spheres
,”
Br. J. Appl. Phys.
0508-3443,
8
, pp.
1
16
.
9.
Norris
,
A. N.
, 1985, “
A Differential Scheme for the Effective Moduli of Composites
,”
Mech. Mater.
0167-6636,
4
, pp.
1
16
.
10.
Milton
,
G. W.
, 2002, “
The Theory of Composites
,”
Cambridge Monographs on Applied and Computational Mathematics
,
Cambridge University Press
,
Cambridge, England
, Vol.
6
.
11.
Duva
,
J. M.
, 1984, “
A Self-Consistent Analysis of the Stiffening Effect of Rigid Inclusions on a Power-Law Material
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
317
321
.
12.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London
0370-1662,
241
, pp.
376
396
.
13.
Lopez-Pamies
,
O.
, 2009, “
Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids
,”
J. Elast.
0374-3535,
94
, pp.
115
145
.
14.
Lopez-Pamies
,
O.
, and
Idiart
,
M. I.
, 2009, “
An Exact Result for the Macroscopic Response of Porous Neo-Hookean Solids
,”
J. Elast.
0374-3535,
95
, pp.
99
105
.
15.
Triantafyllidis
,
N.
,
Nestorovic
,
M. D.
, and
Schraad
,
M. W.
, 2006, “
Failure Surfaces for Finitely Strained Two-Phase Periodic Solids Under General In-Plane Loading
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
505
515
.
16.
Michel
,
J. C.
,
Lopez-Pamies
,
O.
,
Ponte Castañeda
,
P.
, and
Triantafyllidis
,
N.
, “
Microscopic and Macroscopic Instabilities in Finitely Strained Reinforced Elastomers
,” in preparation. 1051-9815
17.
Moraleda
,
J.
,
Segurado
,
J.
, and
Llorca
,
J.
, 2009, “
Finite Deformation of Incompressible Fiber-Reinforced Elastomers: A Computational Micromechanics Approach
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
1596
1613
.
18.
Eischen
,
J. W.
, and
Torquato
,
S.
, 1993, “
Determining Elastic Behavior of Composites by the Boundary Element Method
,”
J. Appl. Phys.
0021-8979,
74
, pp.
159
170
.
19.
Christensen
,
R. M.
, 2005,
Mechanics of Composite Materials
,
Dover
,
New York
.
20.
Mullins
,
L.
, and
Tobin
,
N. R.
, 1965, “
Stress Softening in Rubber Vulcanizates. Part I. Use of a Strain Amplification Factor to Describe the Elastic Behavior of Filler-Reinforced Vulcanized Rubber
,”
J. Appl. Polym. Sci.
0021-8995,
9
, pp.
2993
3009
.
You do not currently have access to this content.