In the present paper, formulas for the velocity of Rayleigh waves in incompressible isotropic solids subject to a general pure homogeneous prestrain are derived using the theory of cubic equation. They have simple algebraic form and hold for a general strain-energy function. The formulas are concretized for some specific forms of strain-energy function. They then become totally explicit in terms of parameters characterizing the material and the prestrains. These formulas recover the (exact) value of the dimensionless speed of Rayleigh wave in incompressible isotropic elastic materials (without prestrain). Interestingly that, for the case of hydrostatic stress, the formula for the Rayleigh wave velocity does not depend on the type of strain-energy function.

1.
Rayleigh
,
L.
, 1885, “
On Waves Propagating Along the Plane Surface of an Elastic Solid
,”
Proc. R. Soc. London
0370-1662,
17
, pp.
4
11
.
2.
Adams
,
S. D. M.
,
Craster
,
R. V.
,
Williams
,
D. P.
, 2007, “
Rayleigh Waves Guided by Topography
,”
Proc. R. Soc. London, Ser. A
0950-1207,
463
, pp.
531
550
.
3.
Rahman
,
M.
, and
Barber
,
J. R.
, 1995, “
Exact Expression for the Roots of the Secular Equation for Rayleigh Waves
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
250
252
.
4.
Nkemzi
,
D.
, 1997, “
A New Formula for the Velocity of Rayleigh Waves
,”
Wave Motion
0165-2125,
26
, pp.
199
205
.
5.
Destrade
,
M.
, 2003, “
Rayleigh Waves in Symmetry Planes of Crystals: Explicit Secular Equations and Some Explicit Wave Speeds
,”
Mech. Mater.
0167-6636,
35
, pp.
931
939
.
6.
Malischewsky
,
P. G.
, 2000, “
Comment to ‘A New Formula for Velocity of Rayleigh Waves’ by D. Nkemzi [Wave Motion 26 (1997) 199–205]
,”
Wave Motion
0165-2125,
31
, pp.
93
96
.
7.
Pham
,
C. V.
, and
Ogden
,
R. W.
, 2004, “
On Formulas for the Rayleigh Wave Speed
,”
Wave Motion
0165-2125,
39
, pp.
191
197
.
8.
Ting
,
T. C. T.
, 2002, “
A Unified Formalism for Elastostatics or Steady State Motion of Compressible or Incompressible Anisotropic Elastic Materials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
5427
5445
.
9.
Ogden
,
R. W.
, and
Pham
,
C. V.
, 2004, “
On Rayleigh Waves in Incompressible Orthotropic Elastic Solids
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
2
), pp.
530
533
.
10.
Pham
,
C. V.
, and
Ogden
,
R. W.
, 2004, “
Formulas for the Rayleigh Wave Speed in Orthotropic Elastic Solids
,”
Arch. Mech.
0373-2029,
56
(
3
), pp.
247
265
.
11.
Pham
,
C. V.
, and
Ogden
,
R. W.
, 2005, “
On a General Formula for the Rayleigh Wave Speed in Orthotropic Elastic Solids
,”
Meccanica
0025-6455,
40
, pp.
147
161
.
12.
Hirao
,
M.
,
Fukuoka
,
H.
, and
Hori
,
K.
, 1981, “
Acoustoelastic Effect of Rayleigh Surface Wave in Isotropic Material
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
119
124
.
13.
Delsanto
,
P. P.
, and
Clark
,
A. V.
, 1987, “
Rayleigh Wave Propagation in Deformed Orthotropic Materials
,”
J. Acoust. Soc. Am.
0001-4966,
81
(
4
), pp.
952
960
.
14.
Duquennoy
,
M.
,
Ouaftouh
,
M.
, and
Ourak
,
M.
, 1999, “
Ultrasonic Evaluation of Stresses in Orthotropic Materials Using Rayleigh Waves
,”
NDT & E Int.
0963-8695,
32
, pp.
189
199
.
15.
Duquennoy
,
M.
,
Devos
,
D.
,
Ouaftouh
,
M.
,
Lochegnies
,
D.
, and
Roméro
,
E.
, 2006, “
Ultrasonic Evaluation of Residual Stresses in Flat Glass Tempering: Comparing Experimental Investigation and Numerical Modeling
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
6
), pp.
3773
3781
.
16.
Tanuma
,
K.
, and
Man
,
C. -S.
, 2006, “
Pertubation Formula for Phase Velocity of Rayleigh Waves in Prestressed Anisotropic Media
,”
J. Elast.
0374-3535,
85
, pp.
21
37
.
17.
Song
,
Y. Q.
, and
Fu
,
Y. B.
, 2007, “
A Note on Perturbation Formulae for the Surface-Wave Speed Due to Perturbations in Material Properties
,”
J. Elast.
0374-3535,
88
, pp.
187
192
.
18.
Dowaikh
,
M. A.
, and
Ogden
,
R. W.
, 1990, “
On Surface Waves and Deformations in a Pre-Stressed Incompressible Elastic Solids
,”
IMA J. Appl. Math.
0272-4960,
44
, pp.
261
284
.
19.
Cowles
,
W. H.
, and
Thompson
,
J. E.
, 1947,
Algebra
,
Van Nostrand
,
New York
.
20.
Ewing
,
W. M.
,
Jardetzky
,
W. S.
, and
Press
,
F.
, 1957,
Elastic Waves in Layered Media
,
McGraw-Hill
,
New York
.
21.
Malischewsky
,
P. G.
, 2000, “
Some Special Solutions of Rayleigh’s Equation and the Reflections of Body Waves at a Free Surface
,”
Geofis. Int.
0016-7169,
39
, pp.
155
160
.
22.
Novozhilov
,
V. V.
, 1961,
Theory of Elasticity
,
Pergamon
,
Oxford
.
You do not currently have access to this content.