Fractal patterns are observed in computational mechanics of elastic-plastic transitions in two models of linear elastic/perfectly plastic random heterogeneous materials: (1) a composite made of locally isotropic grains with weak random fluctuations in elastic moduli and/or yield limits and (2) a polycrystal made of randomly oriented anisotropic grains. In each case, the spatial assignment of material randomness is a nonfractal strict-white-noise field on a 256×256 square lattice of homogeneous square-shaped grains; the flow rule in each grain follows associated plasticity. These lattices are subjected to simple shear loading increasing through either one of three macroscopically uniform boundary conditions (kinematic, mixed-orthogonal, or static) admitted by the Hill–Mandel condition. Upon following the evolution of a set of grains that become plastic, we find that it has a fractal dimension increasing from 0 toward 2 as the material transitions from elastic to perfectly plastic. While the grains possess sharp elastic-plastic stress-strain curves, the overall stress-strain responses are smooth and asymptote toward perfectly plastic flows; these responses and the fractal dimension-strain curves are almost identical for three different loadings. The randomness in elastic moduli in the model with isotropic grains alone is sufficient to generate fractal patterns at the transition but has a weaker effect than the randomness in yield limits. As the random fluctuations vanish (i.e., the composite becomes a homogeneous body), a sharp elastic-plastic transition is recovered.

1.
Mandelbrot
,
B.
, 1982,
The Fractal Geometry of Nature
,
Freeman
,
San Francisco
.
2.
Feder
,
J.
, 2007,
Fractals (Physics of Solids and Liquids)
,
Springer
,
New York
.
3.
Sornette
,
D.
, 2004,
Critical Phenomena in Natural Sciences
,
Springer
,
New York
.
4.
Sahimi
,
M.
, and
Goddard
,
J. D.
, 1986, “
Elastic Percolation Models for Cohesive Mechanical Failure in Heterogeneous Systems
,”
Phys. Rev. B
0163-1829,
33
, pp.
7848
7851
.
5.
Sahimi
,
M.
, 2003,
Heterogeneous Materials II
,
Springer
,
New York
.
6.
Saouma
,
V. E.
, and
Barton
,
C. C.
, 1994, “
Fractals, Fractures, and Size Effects in Concrete
,”
J. Eng. Mech.
0733-9399,
120
, pp.
835
855
.
7.
Shaniavski
,
A. A.
, and
Artamonov
,
M. A.
, 2004, “
Fractal Dimensions for Fatigue Fracture Surfaces Performed on Micro- and Meso-Scale Levels
,”
Int. J. Fract.
0376-9429,
128
, pp.
309
314
.
8.
Zaiser
,
M.
,
Bay
,
K.
, and
Hahner
,
P.
, 1999, “
Fractal Analysis of Deformation-Induced Dislocation Patterns
,”
Acta Mater.
1359-6454,
47
, pp.
2463
2476
.
9.
Ostoja-Starzewski
,
M.
, 1990, “
Micromechanics Model of Ice Fields—II: Monte Carlo Simulation
,”
Pure Appl. Geophys.
0033-4553,
133
(
2
), pp.
229
249
.
10.
Poliakov
,
A. N. B.
,
Herrmann
,
H. J.
,
Podladchikov
,
Y. Y.
, and
Roux
,
S.
, 1994, “
Fractal Plastic Shear Bands
,”
Fractals
0218-348X,
2
, pp.
567
581
.
11.
Poliakov
,
A. N. B.
, and
Herrmann
,
H. J.
, 1994, “
Self-Organized Criticality of Plastic Shear Bands in Rocks
,”
Geophys. Res. Lett.
0094-8276,
21
(
19
), pp.
2143
2146
.
12.
Ostoja-Starzewski
,
M.
, 2008,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
13.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
14.
Podio-Guidugli
,
P.
, 2000, “
A Primer in Elasticity
,”
J. Elast.
0374-3535,
58
, pp.
1
104
.
15.
Hazanov
,
S.
, 1998, “
Hill Condition and Overall Properties of Composites
,”
Arch. Appl. Mech.
0939-1533,
68
, pp.
385
394
.
16.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
, 2008, “
Scale-Dependent Homogenization of Inelastic Random Polycrystals
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
051008
.
17.
Taylor
,
L.
,
Cao
,
J.
,
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1995, “
Numerical Simulations of Sheet-Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
50
, pp.
168
179
.
18.
Shoemake
,
K.
, 1992, “
Uniform Random Rotations
,”
Graphics Gems III
,
D.
Kirk
, ed.,
Academic
,
New York
.
19.
Hill
,
R.
, 1952, “
The Elastic Behavior of a Crystalline Aggregate
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
65
, pp.
349
354
.
20.
Jeulin
,
D.
,
Li
,
W.
, and
Ostoja-Starzewski
,
M.
, 2008, “
On the Geodesic Property of Strain Field Patterns in Elasto-Plastic Composites
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
, pp.
1217
1227
.
21.
Ostoja-Starzewski
,
M.
, 2005, “
Scale Effects in Plasticity of Random Media: Status and Challenges
,”
Int. J. Plast.
0749-6419,
21
, pp.
1119
1160
.
22.
Jiang
,
M.
,
Ostoja-Starzewski
,
M.
, and
Jasiuk
,
I.
, 2001, “
Scale-Dependent Bounds on Effective Elastoplastic Response of Random Composites
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
655
673
.
23.
Ostoja-Starzewski
,
M.
, and
Castro
,
J.
, 2003, “
Random Formation, Inelastic Response and Scale Effects in Paper
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
(
1806
), pp.
965
986
.
24.
Perrier
,
E.
,
Tarquis
,
A. M.
, and
Dathe
,
A.
, 2006, “
A Program for Fractal and Multi-Fractal Analysis of Two-Dimensional Binary Images: Computer Algorithms Versus Mathematical Theory
,”
Geoderma
0016-7061,
134
, pp.
284
294
.
You do not currently have access to this content.