This paper evaluates frequencies of higher-order modes in the free vibration response of simply-supported multilayered orthotropic composite plates. Closed-form solutions in harmonic forms are given for the governing equations related to classical and refined plate theories. Typical cross-ply (0 deg/90 deg) laminated panels (10 and 20 layers) are considered in the numerical investigation (these were suggested by European Aeronautic Defence and Space Company (EADS) in the framework of the “Composites and Adaptive Structures: Simulation, Experimentation and Modeling” (CASSEM) European Union (EU) project. The Carrera unified formulation has been employed to implement the considered theories: the classical lamination theory, the first-order shear deformation theory, the equivalent single layer model with fourth-order of expansion in the thickness direction z, and the layerwise model with linear order of expansion in z for each layer. Higher-order frequencies and the related harmonic modes are computed by varying the number of wavelengths (m,n) in the two-plate directions and the degrees of freedom in the plate theories. It can be concluded above all that—refined plate models lead to higher-order frequencies, which cannot be computed by simplified plate theories—frequencies related to high values of wavelengths, even the fundamental ones, can be wrongly predicted when using classical plate theories, even though thin plate geometries are analyzed.

1.
Bogdanovich
,
A. E.
, and
Sierakowski
,
R. L.
, 1999, “
Composite Materials and Structures: Science, Technology and Applications—A Compendium of Books, Review Papers and Other Sources of Informations
,”
Appl. Mech. Rev.
0003-6900,
52
(
12
), pp.
351
366
.
2.
Leissa
,
A. W.
, 1969, “
Vibration of Plates
,” NASA Report No. SP-160.
3.
Leissa
,
A. W.
, 1973, “
Vibration of Shells
,” NASA Report No. SP-288.
4.
Werner
,
S.
, 2004,
Vibrations of Shells and Plates
, 3rd ed.,
CRC
,
New York
/
Dekker
,
New York
.
5.
De Rosa
,
S.
,
Franco
,
F.
, and
Ricci
,
F.
, 1999,
Introduzione alla Tecnica Statistico-Energetica (S.E.A.) per la Dinamica Strutturale e l’Acustica Interna
,
Liguori Editore
,
Napoli
.
6.
Noor
,
A. K.
, 1973, “
Free Vibrations of Multilayered Composite Plates
,”
AIAA J.
0001-1452,
11
(
7
), pp.
1038
1039
.
7.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
, 1995, “
Research on Thick Plate Vibration: A Literature Survey
,”
J. Sound Vib.
0022-460X,
180
(
1
), pp.
163
176
.
8.
Shuyu
,
L.
, 2001, “
Study on the Flexural Vibration of Rectangular Thin Plates With Free Boundary Conditions
,”
J. Sound Vib.
0022-460X,
239
(
5
), pp.
1063
1071
.
9.
Leung
,
A. Y. T.
, and
Zhu
,
B.
, 2004, “
Transverse Vibration of Thick Polygonal Plates Using Analytically Integrated Trapezoidal Fourier p-Element
,”
Comput. Struct.
0045-7949,
82
(
2–3
), pp.
109
119
.
10.
Batra
,
R. C.
, and
Aimmanee
,
S.
, 2005, “
Vibration of Thick Isotropic Plates With Higher Order Shear and Normal Deformable Plate Theories
,”
Comput. Struct.
0045-7949,
83
(
12–13
), pp.
934
955
.
11.
Gorman
,
D. J.
, 2006, “
Exact Solutions for the Free In-Plane Vibration of Rectangular Plates With Two Opposite Edges Simply Supported
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
131
161
.
12.
Gorman
,
D. J.
, 2004, “
Accurate Analytical Type Solutions for the Free In-Plane Vibration of Clamped and Simply Supported Rectangular Plates
,”
J. Sound Vib.
0022-460X,
276
(
1–2
), pp.
311
333
.
13.
Taher
,
H. R. D.
,
Omidi
,
M.
,
Zadpoor
,
A. A.
, and
Nikooyan
,
A. A.
, 2006, “
Free Vibration of Circular and Annular Plates With Variable Thickness and Different Combinations of Boundary Conditions
,”
J. Sound Vib.
0022-460X,
296
(
4–5
), pp.
1084
1092
.
14.
Aimmanee
,
S.
, and
Batra
,
R. C.
, 2007, “
Analytical Solution for Vibration of an Incompressibile Isotropic Linear Elastic Rectangular Plate, and Frequencies Missed in Previous Solutions
,”
J. Sound Vib.
0022-460X,
302
(
3
), pp.
613
620
.
15.
Batra
,
R. C.
, and
Aimmanee
,
S.
, 2003, “
Missing Frequencies in Previous Exact Solutions of Free Vibrations of Simply Supported Rectangular Plates
,”
J. Sound Vib.
0022-460X,
265
(
4
), pp.
887
896
.
16.
Batra
,
R. C.
,
Vidoli
,
S.
, and
Vestroni
,
F.
, 2002, “
Plane Wave Solutions and Modal Analysis in Higher Order Shear and Normal Deformable Plate Theories
,”
J. Sound Vib.
0022-460X,
257
(
1
), pp.
63
88
.
17.
Bardell
,
N. S.
,
Langley
,
R. S.
, and
Dunsdon
,
J. M.
, 1996, “
On the Free In-Plane Vibration of Isotropic Rectangular Plates
,”
J. Sound Vib.
0022-460X,
191
(
3
), pp.
459
467
.
18.
Liew
,
K. M.
, and
Yang
,
B.
, 1999, “
Three-Dimensional Elasticity Solutions for Free Vibrations of Circular Plates: A Polynomial-Ritz Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
175
(
1–2
), pp.
189
201
.
19.
Zhao
,
Y. B.
,
Wei
,
G. W.
, and
Xiang
,
Y.
, 2002, “
Discrete Singular Convolution for the Prediction of High Frequency Vibration of Plates
,”
Int. J. Solids Struct.
0020-7683,
39
(
1
), pp.
65
88
.
20.
Beslin
,
O.
, and
Nicolas
,
J.
, 1997, “
A Hierarchical Functions Set for Predicting Very High Order Plate Bending Modes With Any Boundary Conditions
,”
J. Sound Vib.
0022-460X,
202
(
5
), pp.
633
655
.
21.
Oosterhout
,
G. M.
,
van der Hoogt
,
P. J. M.
, and
Spiering
,
R. M. E. J.
, 1995, “
Accurate Calculation Methods for Natural Frequencies of Plates With Special Attention to the Higher Modes
,”
J. Sound Vib.
0022-460X,
183
(
1
), pp.
33
47
.
22.
Sakiyama
,
T.
, and
Huang
,
M.
, 1998, “
Free Vibration Analysis of Rectangular Plates With Variable Thickness
,”
J. Sound Vib.
0022-460X,
216
(
3
), pp.
379
397
.
23.
Mindlin
,
R. D.
, 2006,
An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
,
J.
Yang
, ed.,
World Scientific
,
Singapore
/University of Nebraska-Lincoln.
24.
Bouthier
,
O. M.
, and
Bernhard
,
R. J.
, 1995, “
Simple Models of the Energetics of Transversely Vibrating Plates
,”
J. Sound Vib.
0022-460X,
182
(
1
), pp.
149
166
.
25.
Wei
,
G. W.
,
Zhao
,
Y. B.
, and
Xiang
,
Y.
, 2002, “
A Novel Approach for the Analysis of High-Frequency Vibrations
,”
J. Sound Vib.
0022-460X,
257
(
2
), pp.
207
246
.
26.
Kim
,
H. -Y.
, and
Hwang
,
W.
, 2001, “
Estimation of Normal Mode and Other System Parameters of Composite Laminated Plates
,”
Compos. Struct.
0263-8223,
53
(
3
), pp.
345
354
.
27.
Gorman
D. J.
and
Ding
,
W.
, 2003, “
Accurate Free Vibration Analysis of Completely Free Symmetric Cross-Ply Rectangular Laminated Plates
,”
Compos. Struct.
0263-8223,
60
(
3
), pp.
359
365
.
28.
Gorman
,
D. J.
, 2000, “
Free Vibration Analysis of Completely Free Rectangular Plates by the Superposition-Galerkin Method
,”
J. Sound Vib.
0022-460X,
237
(
5
), pp.
901
914
.
29.
Ye
,
J. Q.
, 1997, “
A Three-Dimensional Free Vibration Analysis of Cross-Ply Laminated Rectangular Plate With Clamped Edges
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
140
(
3–4
), pp.
383
392
.
30.
Topal
,
U.
,
Uzman
,
U. V.
, 2007, “
Free Vibration Analysis of Laminated Plates Using Higher-Order Shear Deformation Theory
,”
Proceedings in Physics
, Vol.
111
,
Springer
,
Netherlands
, pp.
493
498
.
31.
Jung
,
S. N.
,
Nagaraj
,
V. T.
, and
Chopra
,
I.
, 2001, “
Refined Structural Dynamics Model for Composite Rotor Blades
,”
AIAA J.
0001-1452,
39
(
2
), pp.
339
348
.
32.
Cho
,
M.
, and
Kim
,
J. -S.
, 2001, “
Higher-Order Zig-Zag Theory for Laminated Composites With Multiple Delaminations
,”
ASME J. Appl. Mech.
0021-8936,
68
(
6
), pp.
869
877
.
33.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
, 2004, “
High-Order Layer Wise Mechanics and Finite Element for the Damped Dynamic of Sandwich Composite Beams
,”
Int. J. Solids Struct.
0020-7683,
41
(
24–25
), pp.
6853
6871
.
34.
Rao
,
M. K.
, and
Desai
,
Y. M.
, 2004, “
Analytical Solutions for Vibrations of Laminated and Sandwich Plates Using Mixed Theory
,”
Compos. Struct.
0263-8223,
63
(
3–4
), pp.
361
373
.
35.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
, 2003, “
Mechanics and Finite Elements for the Damped Dynamic Characteristics of Curvilinear Laminates and Composite Shell Structures
,”
J. Sound Vib.
0022-460X,
263
(
2
), pp.
399
414
.
36.
Sun
,
C. T.
, and
Whitney
,
J. M.
, 1972, “
On Theories for the Dynamic Response of Laminated Plates
,”
13th ASME and SAE Structures, Structural Dynamics and Materials Conference
, San Antonio, TX, April 10–12.
37.
Wang
,
C. M.
, 1996, “
Vibration Frequencies of Simply Supported Polygonal Sandwich Plates Via Kirchhoff Solutions
,”
J. Sound Vib.
0022-460X,
190
(
2
), pp.
255
260
.
38.
Nayak
,
A. K.
,
Moy
,
S. S. J.
, and
Shenoi
,
R. A.
, 2002, “
Free Vibration Analysis of Composite Sandwich Plates Based on Reddy’s Higher-Order Theory
,”
Composites, Part B
1359-8368,
33
(
7
), pp.
505
519
.
39.
Messina
,
A.
, and
Soldatos
,
K. P.
, 1999, “
Vibration of Completely Free Composite Plates and Cylindrical Shell Panels by a Higher-Order Theory
,”
Int. J. Mech. Sci.
0020-7403,
41
(
8
), pp.
891
918
.
40.
Tessler
,
A.
,
Saether
,
E.
, and
Tsui
,
T.
, 1995, “
Vibration of Thick Laminated Plates
,”
J. Sound Vib.
0022-460X,
179
(
3
), pp.
475
498
.
41.
Han
,
W.
, and
Petyt
,
M.
, 1997, “
Geometrically Nonlinear Vibration Analysis of Thin, Rectangular Plates Using the Hierarchical Finite Element Method—II: 1st Mode of Laminated Plates and Higher Modes of Isotropic and Laminated Plates
,”
Comput. Struct.
0045-7949,
63
(
2
), pp.
309
318
.
42.
Zhang
,
Q. J.
, and
Sainsbury
,
M. G.
, 2000, “
The Galerkin Element Method Applied to the Vibration of Rectangular Damped Sandwich Plates
,”
Comput. Struct.
0045-7949,
74
(
6
), pp.
717
730
.
43.
Carrera
,
E.
, 1999, “
A Study of Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells
,”
J. Sound Vib.
0022-460X,
225
(
5
), pp.
803
829
.
44.
Carrera
,
E.
, 1999, “
A Reissner’s Mixed Variational Theorem Applied to Vibrational Analysis of Multilayered Shells
,”
ASME J. Appl. Mech.
0021-8936,
66
(
1
), pp.
69
78
.
45.
Carrera
,
E.
, 1998, “
Layer-Wise Mixed Models for Accurate Vibration Analysis of Multilayered Plates
,”
ASME J. Appl. Mech.
0021-8936,
65
(
4
), pp.
820
828
.
46.
Carrera
,
E.
, 1995, “
A Class of Two Dimensional Theories for Multilayered Plates Analysis
,”
Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat.
0001-4419,
19–20
, pp.
49
87
.
47.
Carrera
,
E.
, 2002, “
Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells
,”
Arch. Comput. Methods Eng.
1134-3060,
9
(
2
), pp.
87
140
.
48.
Reddy
,
J. N.
, 2004,
Mechanics of Laminated Composite Plates and Shells, Theory and Analysis
, 2nd ed.,
CRC
,
New York
.
49.
Carrera
,
E.
, and
Brischetto
,
S.
, 2008, “
Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories
,”
Compos. Struct.
0263-8223,
82
(
4
), pp.
549
562
.
50.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1989, “
Stress and Free Vibration Analysis of Multilayered Composite Plates
,”
Compos. Struct.
0263-8223,
11
(
3
), pp.
183
204
.
51.
Reddy
,
J. N.
, and
Phan
,
N. D.
, 1985, “
Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher Order Shear Deformation Theory
,”
J. Sound Vib.
0022-460X,
98
(
2
), pp.
157
170
.
You do not currently have access to this content.