The effect of the size of hybrid metal-composite joint on its nominal strength, experimentally demonstrated in the preceding paper (part I), is modeled mathematically. Fracture initiation from a reentrant corner at the interface of a metallic bar and a fiber composite laminate sheet is analyzed. The fracture process zone (or cohesive zone) at the corner is approximated as an equivalent sharp crack according to the linear elastic fracture mechanics (LEFM). The asymptotic singular stress and displacement fields surrounding the corner tip and the tip of an interface crack emanating from the corner tip are calculated by means of complex potentials. The singularity exponents of both fields are generally complex. Since the real part of the stress singularity exponent for the corner tip is not 12, as required for finiteness of the energy flux into the tip, the interface crack propagation criterion is based on the singular field of the interface crack considered to be embedded in a more remote singular near-tip field of the corner from which, in turn, the boundaries are remote. The large-size asymptotic size effect on the nominal strength of the hybrid joint is derived from the LEFM considering the interface crack length to be much smaller than the structure size. The deviation from LEFM due to finiteness of the interface crack length, along with the small-size asymptotic condition of quasiplastic strength, allows an approximate general size effect law for hybrid joints to be derived via asymptotic matching. This law fits closely the experimental results reported in the preceding paper. Numerical validation according to the cohesive crack model is relegated to a forthcoming paper.

1.
Yu
,
Q.
,
Bažant
,
Z. P.
,
Bayldon
,
J.
,
Le
,
J. -L.
,
Caner
,
F. C.
,
Ng
,
W. H.
,
Waas
,
A. M.
, and
Daniel
,
I. M.
, (2010), “
Scaling of Strength of Metal-Composite Joints—Part I: Experimental Investigation
,”
ASME J. Appl. Mech.
0021-8936,
77
, p.
011011
.
2.
Bažant
,
Z. P.
, 2005,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
,
London
.
3.
Bažant
,
Z. P.
, 2004, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
37
), pp.
13400
13407
.
4.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
526
528
.
5.
Bažant
,
Z. P.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Quasibrittle Structures With Reentrant Corners Symmetrically Loaded in Tension
,”
J. Eng. Mech.
0733-9399,
132
(
11
), pp.
1168
1176
.
6.
Bažant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
0733-9399,
110
(
4
), pp.
518
535
.
7.
Bažant
,
Z. P.
, 1993, “
Scaling Laws in Mechanics of Failure
,”
J. Eng. Mech.
0733-9399,
119
(
9
), pp.
1828
1844
.
8.
Bažant
,
Z. P.
, 1997, “
Scaling of Quasibrittle Fracture: Asymptotic Analysis
,”
Int. J. Fract.
0376-9429,
83
(
1
), pp.
19
40
.
9.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1997,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC
,
Boca Raton, FL
.
10.
Bogy
,
D. B.
, 1971, “
Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles Under Surface Tractions
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
377
385
.
11.
Hein
,
V. L.
, and
Erdogan
,
F.
, 1971, “
Stress Singularities in a Two-Material Wedge
,”
Int. J. Fract. Mech.
0020-7268,
7
, pp.
317
330
.
12.
Achenbach
,
J. D.
,
Bažant
,
Z. P.
, and
Khetan
,
R. P.
, 1976, “
Elastodynamic Near-Tip Fields for a Crack Propagating Along the Interface of Two Orthotropic Solids
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
811
818
.
13.
Barsoum
,
R. S.
, 1988, “
Application of the Finite Element Iterative Method to the Eigenvalue Problem and a Crack Between Dissimilar Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
541
554
.
14.
Barsoum
,
R. S.
, and
Freese
,
C. E.
, 1984, “
An Interative Approach for the Evaluation of Delamination Stresses in Laminated Composite
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1415
1431
.
15.
Desmorat
,
R.
, and
Leckie
,
F. A.
, 1998, “
Singularities in Bimaterials: Parametric Study of an Isotropic/Anisotropic Joint
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
33
52
.
16.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
Gorden & Beach Science
,
London
.
17.
Suo
,
Z.
, 1990, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
0950-1207,
427
, pp.
331
358
.
18.
Gomez
,
F. J.
, and
Elices
,
M.
, 2003, “
A Fracture Criterion for Sharp V-Notched Samples
,”
Int. J. Fract.
0376-9429,
123
, pp.
163
175
.
19.
Grenestedt
,
J. L.
, and
Hallstrom
,
S.
, 1997, “
Crack Initiation From Homogeneous and Bimaterial Corners
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
811
818
.
20.
Leguillon
,
D.
, 2002, “
Strength or Toughness? A Criterion for Crack Onset at a Notch
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
61
72
.
21.
Labossiere
,
P. E. W.
,
Duun
,
M. L.
, and
Cunningham
,
S. J.
, 2002, “
Application of Bimaterial Interface Corner Failure Mechanics to Silicon/Glass Anodic Bonds
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
405
433
.
22.
Liu
,
D.
, and
Fleck
,
N. A.
, 1999, “
Scale Effect in the Initiation of Cracking of a Scarf Joint
,”
Int. J. Fract.
0376-9429,
95
, pp.
67
88
.
23.
Reedy
,
E. D.
, Jr.
, 1993, “
Asymptotic Interface-Corner Solutions for Butt Tensile Joints
,”
Int. J. Solids Struct.
0020-7683,
30
(
6
), pp.
767
777
.
24.
Reedy
,
E. D.
, Jr.
, 2000, “
Comparison Between Interface Corner and Interfacial Fracture Analysis of an Adhesively-Bonded Butt Joint
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2429
2442
.
25.
Zhang
,
Z.
, and
Suo
,
Z.
, 2007, “
Split Singularities and the Competition Between Crack Penetration and Debond at a Bimaterial Interface
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
4559
4573
.
26.
Banks-Sills
,
L.
, and
Sherer
,
A.
, 2002, “
A Conservative Integral for Determining Stress Intensity Factors of a Bimaterial Notch
,”
Int. J. Fract.
0376-9429,
115
, pp.
1
26
.
27.
Liu
,
X. H.
,
Suo
,
Z.
, and
Ma
,
Q.
, 1998, “
Split Singularities: Stress Field Near the Edge of a Silicon Die on a Polymer Substrate
,”
Acta Mater.
1359-6454,
47
(
1
), pp.
67
76
.
28.
Munz
,
D.
, and
Yang
,
Y. Y.
, 1993, “
Stress Near the Edge of Bonded Dissimilar Materials Described by Two Stress Intensity Factors
,”
Int. J. Fract.
0376-9429,
60
, pp.
169
177
.
29.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Daniel
,
I. M.
,
Caner
,
F. C.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Laminate-Foam Sandwich Plates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
366
374
.
30.
Barenblatt
,
G. I.
, 1978,
Similarity, Self-Similarity and Intermediate Asymptotics
,
Girometeoizdat
,
Moscow
.
31.
Barenblatt
,
G. I.
, 1996,
Scaling, Self-Similarity and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
32.
Muki
,
R.
, and
Westmann
,
R. A.
, 1974, “
Crack Emanating From an Open Notch
,”
J. Elast.
0374-3535,
4
(
3
), pp.
173
186
.
33.
Westmann
,
R. A.
, 1975, “
Geometrical Effects in Adhesive Joints
,”
Int. J. Eng. Sci.
0020-7225,
13
, pp.
369
391
.
34.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
0065-2156,
29
, pp.
64
191
.
35.
Agrawal
,
A.
, and
Karlsson
,
A. M.
, 2006, “
Obtaining Model Mixity for a Bimaterial Interface Crack Using the Virtual Crack Closure Technique
,”
Int. J. Fract.
0376-9429,
141
, pp.
75
98
.
36.
Toya
,
M.
, 1992, “
On the Mode I and Mode II Energy Release Rates of an Interface Crack
,”
Int. J. Fract.
0376-9429,
56
, pp.
345
352
.
37.
Bažant
,
Z. P.
, and
Xi
,
Y.
, 1991, “
Statistical Size Effect in Quasi-Brittle Structures: II. Nonlocal Theory
,”
J. Eng. Mech.
0733-9399,
117
(
11
), pp.
2623
2640
.
38.
Rice
,
J. R.
, 1988, “
Elastic Fracture Mechanics Concepts for Interface Cracks
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
98
103
.
39.
Caner
,
F. C.
, and
Bažant
,
Z. P.
, 2009, “
Size Effect on Strength of laminate-Foam Sandwich Plates: Finite Element Analysis With Interface Fracture
,”
Composites, Part B
1359-8368,
40
(
5
), pp.
337
348
.
40.
2006, ABAQUS/Standard Users Manual,
Version 6.6
, Hibbitt, Karlsson & Sorensen Inc., Pawtucket, RI.
You do not currently have access to this content.