The two-dimensional Mandel-type problem geometry is well-known to bio-geomechanicians for testing rocks, cartilages, and bones with solutions in Cartesian coordinates for rectangular specimens or polar coordinates for cylindrical and disk samples. To date, all existing solutions are only applicable to single-porosity and single-permeability models, which could fall short when the porous material exhibits multiporosity and/or multipermeability characteristics, such as secondary porosity or fracture. This paper extends the plane strain and axisymmetric Mandel-type solutions from single-to dual-porosity and dual-permeability poromechanics. The solutions are presented in explicit analytical forms and account for arbitrary time-dependent external loading conditions, e.g., cyclic and ramping. The derived analytical solutions and results exhibit general behaviors characterized by two time scales. Stresses, pore pressures, and displacements are plotted for various time scale ratios to illustrate the interplaying effects of permeability and stiffness contrast of both porous regions, in addition to the interporosity exchange, on the overall responses of the system. Also, examples with realistic loading conditions for laboratory testing or field simulation such as cyclic and ramping are provided to demonstrate the engineering applications of the presented dual-poroelastic formulation and solutions.

1.
Dickey
,
J. W.
,
Ladd
,
C. C.
, and
Ringer
,
J. J.
, 1968, “
A Plane Strain Device for Testing Clays
,” Civil Engineering Research Report No. R68-3.
2.
Abousleiman
,
Y.
, and
Cui
,
L.
, 1998, “
Poroelastic Solutions in Transversely Isotropic Media for Wellbore and Cylinder
,”
Int. J. Solids Struct.
0020-7683,
35
(
34–35
), pp.
4905
4929
.
3.
Wang
,
H.
, 2000,
Theory of Poroelasticity With Applications to Geomechanics and Hydrology
,
Princeton University Press
,
Princeton, NJ
, Chap. 7 and 8.
4.
Woo
,
S. L.-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. S.
, 1980, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
2
), pp.
85
90
.
5.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Ald
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
, 1998, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
171
178
.
6.
Mandel
,
J.
, 1953, “
Consolidation des sols (étude mathématique)
,”
Geotechnique
0016-8505,
3
(
7
), pp.
287
299
.
7.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
(
2
), pp.
155
164
.
8.
Kenyon
,
D. E.
, 1979, “
Consolidation in Transversely Isotropic Solids
,”
ASME J. Appl. Mech.
0021-8936,
46
(
1
), pp.
65
70
.
9.
Terzaghi
,
K.
, 1943,
Theoretical Soil Mechanics
,
Wiley
,
New York
.
10.
Abousleiman
,
Y.
,
Cheng
,
A. H.-D.
,
Cui
,
L.
,
Detournay
,
E.
, and
Roegiers
,
J. -C.
, 1996, “
Mandel’s Problem Revisited
,”
Geotechnique
0016-8505,
46
(
2
), pp.
187
195
.
11.
Hoang
,
S. K.
, and
Abousleiman
,
Y.
, 2009, “
Poroviscoelastic Two-Dimensional Anisotropic Solution With Application to Articular Cartilage Testing
,”
J. Eng. Mech.
0733-9399,
135
(
5
), pp.
367
374
.
12.
Christian
,
J. T.
, and
Boehmer
,
J. W.
, 1970, “
Plane Strain Consolidation by Finite Elements
,”
J. Soil Mech. Found. Div.
,
96
(
4
), pp.
1435
1457
. 0044-7994
13.
Cui
,
L.
,
Abousleiman
,
Y.
,
Cheng
,
A. H.-D.
, and
Kaliakin
,
V.
, 1996, “
Finite Element Analyses of Anisotropic Poroelasticity: A Generalized Mandel’s Problem and an Inclined Borehole Problem
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
20
(
6
), pp.
381
401
.
14.
Yin
,
S.
,
Rothenburg
,
L.
, and
Dusseault
,
M. B.
, 2006, “
3D Coupled Displacement Discontinuity and Finite Element Analysis of Reservoir Behavior During Production in Semi-Infinite Domain
,”
Transp. Porous Media
0169-3913,
65
(
3
), pp.
425
441
.
15.
Phillips
,
P. J.
, and
Wheeler
,
M. F.
, 2007, “
A Coupling of Mixed and Continuous Galerkin Finite Element Methods For Poroelasticity I: The Continuous Time Case
,”
Comput. Geosci.
0098-3004,
11
(
2
), pp.
131
144
.
16.
Odgaard
,
A.
, and
Linde
,
F.
, 1991, “
The Underestimation of Young’s Modulus in Compressive Testing of Cancellous Bone Specimens
,”
J. Biomech.
0021-9290,
24
(
8
), pp.
691
698
.
17.
Wang
,
C.
,
Chahine
,
N.
,
Hung
,
C.
, and
Ateshian
,
G.
, 2003, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
0021-9290,
36
, pp.
339
353
.
18.
Saada
,
A.
, 1974,
Elasticity: Theory and Applications
,
Pergamon Press
,
New York
.
19.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
5
), pp.
165
173
.
20.
Cui
,
L.
, and
Abousleiman
,
Y.
, 2001, “
Time-Dependent Poromechanical Responses of Saturated Cylinders
,”
J. Eng. Mech.
0733-9399,
127
(
4
), pp.
391
398
.
21.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
, 2007, “
Compressible and Incompressible Constituents in Anisotropic Poroelasticity: The Problem of Unconfined Compression of a Disk
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
161
193
.
22.
Cowin
,
S. C.
, 1999, “
Bone Poroelasticity
,”
J. Biomech.
0021-9290,
32
, pp.
217
238
.
23.
Barenblatt
,
G. I.
,
Zheltov
,
I. P.
, and
Kochina
,
I. N.
, 1960, “
Basic Concept in the Theory of Seepage of Homogeneous Liquid in Fissured Rocks
,”
J. Appl. Math. Mech.
0021-8928,
24
(
5
), pp.
1286
1303
.
24.
Warren
,
J. E.
, and
Root
,
P. J.
, 1963, “
The Behavior of Naturally Fractured Reservoirs
,”
SPEJ
0037-9999,
228
, pp.
245
255
.
25.
Wilson
,
R. K.
, and
Aifantis
,
E. C.
, 1982, “
On the Theory of Consolidation With Double Porosity
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
1009
1035
.
26.
Berryman
,
J. G.
, 2002, “
Extension of Poroelastic Analysis to Double-Porosity Materials: New Technique in Microgeomechanics
,”
J. Eng. Mech.
0733-9399,
128
(
8
), pp.
840
847
.
27.
Stehfest
,
H.
, 1970, “
Numerical Inversion of Laplace Transforms
,”
Commun. ACM
0001-0782,
13
, pp.
47
49
.
28.
Cheng
,
A. H.-D.
,
Sidauruk
,
P.
, and
Abousleiman
,
Y.
, 1994, “
Approximate Inversion of Laplace Transform
,”
Math. J.
1047-5974,
4
(
2
), pp.
76
82
.
29.
Aguilera
,
D.
, 1995,
Naturally Fractured Reservoirs
, 2nd ed.,
PennWell Books
,
Tulsa, OK
, Chap. 1.
30.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
, 3rd ed.,
American Elsevier
,
New York
, Chap. 1.
31.
Berryman
,
J. G.
, and
Pride
,
S. R.
, 2002, “
Models for Computing Geomechanical Constants of Double-Porosity Materials from the Constituents’ Properties
,”
J. Geophys. Res.
0148-0227,
107
(
B3
), pp.
ECV2
-1–ECV2-
14
.
32.
Churchill
,
R. V.
, 1972,
Operational Mathematics
,
McGraw-Hill
,
New York
.
33.
Polyanin
,
A. D.
, and
Manzhirov
,
A. V.
, 1998,
Handbook of Integral Equations
, 1st ed.,
CRC
,
Florida
, Chap. 2.
You do not currently have access to this content.