This paper deals with the flexural instability of flexible spinning cylinders partially filled with viscous fluid. Using the linearized Navier–Stokes equations for the incompressible flow, a two-dimensional model is developed for fluid motion. The resultant force exerted on the flexible cylinder wall as the result of the fluid motion is calculated as a function of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the rotary flexible cylinder mounted on general viscoelastic supports are derived. Then combining the equations describing the fluid force on the flexible cylinder with the structural dynamics equations, the coupled-field governing equations of the system are obtained. A numerical technique is devised with the obtained model for stability analysis of the flexible cylinder and some examples are presented. The effect of material viscoelasticity and structural damping on the stability margins of the flexible cylinder is examined, and some parameter studies on the governing parameters of the critical spinning speed are carried out.

1.
Ibrahim
,
R. A.
, 2005,
Liquid Sloshing Dynamics
,
Cambridge University Press
,
Cambridge, England
.
2.
Kuipers
,
M.
, 1964, “
On the Stability of a Flexibly Mounted Rotating Cylinder Partially Filled With Liquid
,”
Appl. Sci. Res., Sect. A
0365-7132,
13
(
1
), pp.
121
137
.
3.
Wolf
,
I. A.
, 1964, “
Whirl Dynamics of a Rotor Partially Filled With Liquid
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
676
682
.
4.
Lichtenberg
,
G.
, 1982, “
Vibration of an Elastically Mounted Spinning Rotor Partially Filled With Liquid
,”
ASME J. Mech. Des.
0161-8458,
104
(
2
), pp.
389
396
.
5.
Wohlsbruck
,
R.
, 1985, “
Stability of a Rotor Whose Cavity has an Arbitrary Meridian and Partially Filled With Fluid
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
4
, pp.
440
445
.
6.
Zhang
,
W.
,
Tang
,
J.
, and
Tao
,
M. D.
, 1996, “
Dynamic Stability of a Rotor Filled or Partially Filled With Liquid
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
101
105
.
7.
Daich
,
I. M.
, and
Bar
,
I. L.
, 1973, “
Oscillations of a Rotating Rigid Body With a Cavity Partially Filled With a Viscous Liquid
,”
ASME J. Appl. Mech.
0021-8936,
9
(
5
), pp.
516
520
.
8.
Daich
,
I. M.
,
Bar
,
I. L.
, and
Korzovskaya
,
I. D.
, 1976, “
Nonlinear Oscillations of a Rotating Solid Body With Cavity Partially Filled With an Ideal Liquid
,”
Int. Appl. Mech.
1063-7095,
12
(
6
), pp.
616
620
.
9.
Hendricks
,
S. L.
, and
Morton
,
J. B.
, 1979, “
Stability of a Rotor Partially Filled With a Viscous Incompressible Fluid
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
913
918
.
10.
Zhu
,
C. S.
, 2000, “
Stability of a Rotor System on Support of Anisotropical Rigidity and Partially Filled With an Inviscid Fluid
,”
Journal of Aerospace Power
,
15
(
4
), pp.
431
434
.
11.
Zhu
,
C. S.
, 2001, “
Stability Behavior of an Isotropic Rotor System Anisotropically Mounted and Partially Filled With Inviscous Fluid
,”
Proc. SPIE
0277-786X,
4359
(
2
), pp.
1278
1283
.
12.
Zhu
,
C. S.
, 2001, “
Stability Analysis of Symmetrical Rotors Partially Filled With a Viscous Incompressible Fluid
,”
Int. J. Rotating Mach.
1023-621X,
7
(
5
), pp.
301
310
.
13.
Zhu
,
C. S.
, 2002, “
Experimental Investigation Into the Instability of an Over-Hung Rigid Centrifuge Rotor Partially Filled With Fluid
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
4
), pp.
483
491
.
14.
Derendyayev
,
N. V.
, and
Soldatov
,
I. N.
, 2004, “
The Stability of the Steady Motions of a Rotor System With a Fluid Using a Discrete Model
,”
J. Appl. Math. Mech.
0021-8928,
68
(
6
), pp.
883
892
.
15.
Derendyaev
,
N. V.
, 2006, “
Stability and Andronov-Hopf Bifurcation of Steady-State Motion of Rotor System Partly Filled With Liquid: Continuous and Discrete Models
,”
ASME J. Appl. Mech.
0021-8936,
73
(
4
), pp.
580
589
.
16.
Tao
,
M.
, and
Zhang
,
W.
, 2002, “
Dynamic Stability of a Rotor Partially Filled With a Viscous Liquid
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
705
707
.
17.
Limarchenko
,
O. S.
, 1995, “
Nonsteady Rotation of a Cylindrical Storage Tank Partially Filled With a Viscous Fluid
,”
Int. Appl. Mech.
1063-7095,
31
(
5
), pp.
406
411
.
18.
Berman
,
S.
,
Lundgren
,
T. S.
, and
Cheng
,
A.
, 1985, “
Asynchronous Whirl in a Rotating Cylinder Partially Filled With Liquid
,”
J. Fluid Mech.
0022-1120,
150
, pp.
311
427
.
19.
Holm-Christensen
,
G.
, and
Träger
,
K.
, 1991, “
A Note on Rotor Instability Caused by Liquid Motion
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
804
811
.
20.
Yan
,
F.
, and
Farouk
,
B.
, 2003, “
Numerical Simulations of Flows Inside a Partially Filled Centrifuge
,”
ASME J. Fluids Eng.
0098-2202,
125
(
6
), pp.
1033
1042
.
21.
Ribando
,
R. J.
, 2005, “
Incompressible Flow in a Rapidly Rotating Cylinder With a Source/Sink Distribution in the Lateral Wall and a Free Inner Boundary
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
(
6
), pp.
529
542
.
22.
Yuichi
,
S.
,
Sheigeki
,
M.
,
Takuo
,
N.
, and
Yusuke
,
I.
, 2005, “
Stability of a Rotating Hollow Rotor Partially Filled With Liquid (Effect of Discharging Liquid by Centrifugal Force)
,”
JSME Int. J., Ser. C
1340-8062,
71
(
702
), pp.
359
365
.
23.
Khoroshilov
,
V. S.
, 1971, “
The Oscillations of a Liquid Partially Filling a Rotating Conical Cavity
,”
Int. Appl. Mech.
1063-7095,
7
(
11
), pp.
1285
1288
.
24.
Derendyaev
,
N. V.
, and
Senyatkin
,
V. A.
, 1984, “
Stability Conditions for the Steady-State Rotation of a Cylinder Filled With a Stratified Nonuniform Viscous Incompressible Liquid
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
25
(
1
), pp.
30
39
.
25.
Preussner
,
C.
, and
Kollmann
,
F. G.
, 1988, “
On the Stability of a Spinning, Fluid Filled and Sectored Rotor
,”
Comput. Struct.
0045-7949,
30
(
1–2
), pp.
131
141
.
26.
Tao
,
M.
, and
Zhang
,
W.
, 2002, “
Dynamic Stability of a Flexible Spinning Cylinder Partially Filled With a Liquid
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
708
710
.
27.
Firouz-Abadi
,
R. D.
, and
Haddadpour
,
H.
, 2009, “
Flexural Instability of Viscoelastic Cylinders Partially Filed With Liquid
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
9
(
1
), pp.
45
60
.
28.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Fan
,
Z. J.
,
Lee
,
J. H.
,
Kang
,
K. H.
, and
Kim
,
K. J.
, 1998, “
The Forced Vibration of a Beam With Viscoelastic Boundary Supports
,”
J. Sound Vib.
0022-460X,
219
(
5
), pp.
562
571
.
30.
Kang
,
K. H.
, and
Kim
,
K. J.
, 1996, “
Modal Properties of Beams and Plates on Resilient Supports With Rotational and Translational Complex Stiffness
,”
J. Sound Vib.
0022-460X,
190
(
2
), pp.
207
220
.
31.
Saito
,
H.
, and
Yaguchi
,
H.
, 1988, “
Natural Vibrations of a Cantilever Beam With Support Damping
,”
J. Sound Vib.
0022-460X,
120
(
3
), pp.
511
515
.
32.
Saito
,
H.
, and
Otomi
,
K.
, 1979, “
Parametric Response of Viscoelastically Supported Beams
,”
J. Sound Vib.
0022-460X,
63
(
2
), pp.
169
178
.
33.
Li
,
W. L.
, 2001, “
Dynamic Analysis of Beams With Arbitrary Elastic Supports at Both Ends
,”
J. Sound Vib.
0022-460X,
246
(
4
), pp.
751
756
.
You do not currently have access to this content.