The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1s1, the non-Newtonian, colloidal silica-based fluid undergoes dramatic shear thickening and then proceeds to shear thinning. In this regime, the viscosity of the fluid is large enough that the contribution of the foam and the fluid-structure interaction to the stress response of the fluid-filled foam can be neglected. An analytically tractable lubrication model for the stress-strain response of a non-Newtonian fluid-filled, reticulated, elastomeric foam under dynamic compression between two parallel plates at varying instantaneous strain rates is developed. The resulting lubrication model is applicable when the dimension of the foam in the direction of fluid flow (radial) is much greater than that in the direction of loading (axial). The model is found to describe experimental data well for a range of radius to height ratios (14) and instantaneous strain rates of the foam (1s1 to 4×102s1). The applicability of this model is discussed and the range of instantaneous strain rates of the foam over which it is valid is presented. Furthermore, the utility of this model is discussed with respect to the design and development of energy absorption and blast wave protection equipment.

1.
Cheeseman
,
B.
, and
Bogetti
,
T.
, 2003, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Compos. Struct.
0263-8223,
61
, pp.
161
173
.
2.
Bettin
,
G.
, and
McKinley
,
G. H.
, 2005, “
High Deformation Rate Behavior of Polymeric Foams Filled With Concentrated Silica Suspensions
,”
Society of Rheology 77th Annual Meeting
.
3.
Hilyard
,
N. C.
, 1971, “
Observations on the Impact Behaviour of Polyurethane Foams; II. The Effect of Fluid Flow
,”
J. Cell. Plast.
0021-955X,
7
, pp.
84
90
.
4.
Rehkopf
,
J.
,
Brodland
,
G.
, and
McNeice
,
G.
, 1996, “
Experimentally Separating Fluid and Matrix Contributions to Polymeric Foam Behavior
,”
Exp. Mech.
0014-4851,
36
, pp.
1
6
.
5.
Mills
,
N.
, and
Lyn
,
G.
, 2002, “
Modeling Air Flow in Impacted Polyurethane Foam
,”
Cell. Polym.
0262-4893,
21
, pp.
343
365
.
6.
Schraad
,
M.
, and
Harlow
,
F.
, 2006, “
A Multi-Field Approach to Modeling the Dynamic Response of Cellular Materials
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
85
106
.
7.
Dawson
,
M. A.
,
McKinley
,
G. H.
, and
Gibson
,
L. J.
, 2008 “
The Dynamic Compressive Response of Open-Cell Foam Impregnated With a Newtonian Fluid
,”
ASME J. Appl. Mech.
0021-8936,
75
(
4
), p.
041015
.
8.
Seguin
,
M. A.
,
Montillet
,
A.
,
Brunjail
,
D.
, and
Comiti
,
J.
, 1996, “
Liquid-Solid Mass Transfer in Packed Beds of Variously Shaped Particles at Low Reynolds Numbers: Experiments and Model
,”
Chem. Eng. J.
0300-9467,
63
, pp.
1
9
.
9.
Comiti
,
J. M.
, 1989, “
A New Model for Determining Mean Structure Parameters of Fixed Beds From Pressure Drop Experiments: Application to Packed Beds With Parallelepipedal Particles
,”
Chem. Eng. Sci.
0009-2509,
44
, pp.
1539
1545
.
10.
Sabiri
,
N. E.
, and
Comiti
,
J. M.
, 1995, “
Pressure Drop in Non-Newtonian Purely Viscous Fluid Flow Through Porous Media
,”
Chem. Eng. Sci.
0009-2509,
50
, pp.
1193
1201
.
11.
Hoffman
,
R. L.
, 1974, “
Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. II Theory and Experimental Tests
,”
J. Colloid Interface Sci.
0021-9797,
46
, pp.
491
506
.
12.
Barnes
,
H. A.
, 1989, “
Shear-Thickening (‘Dilatancy’) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids
,”
J. Rheol.
0148-6055,
33
, pp.
329
366
.
13.
Bossis
,
G.
, and
Brady
,
J.
, 1989, “
The Rheology of Brownian Suspensions
,”
J. Chem. Phys.
0021-9606,
91
, pp.
1866
1874
.
14.
Farr
,
R. S.
,
Melrose
,
J. R.
, and
Ball
,
R. C.
, 1997, “
Kinetic Theory of Jamming in Hardsphere Startup Flows
,”
Phys. Rev. E
1063-651X,
55
, pp.
7203
7211
.
15.
Foss
,
D. R.
, and
Brady
,
J. F.
, 2000, “
Structure Diffusion and Rheology of Brownian Suspensions by Stokesian Dynamics Simulation
,”
J. Fluid Mech.
0022-1120,
407
, pp.
167
200
.
16.
Catherall
,
A. A.
,
Melrose
,
J. R.
, and
Ball
,
R. C.
, 2000, “
Shear Thickening and Order-Disorder Effects in Concentrated Colloids at High Shear Rates
,”
J. Rheol.
0148-6055,
44
, pp.
1
25
.
17.
Bender
,
J.
, and
Wagner
,
N.
, 1996, “
Reversible Shear Thickening in Monodisperse and Bidisperse Colloidal Dispersions
,”
J. Rheol.
0148-6055,
40
, pp.
899
916
.
18.
Maranzano
,
B. J.
, and
Wagner
,
N. J.
, 2001, “
The Effects of Particle Size on Reversible Shear Thickening of Concentrated Colloidal Dispersions
,”
J. Chem. Phys.
0021-9606,
114
, pp.
10514
10527
.
19.
Maranzano
,
B. J.
, and
Wagner
,
N. J.
, 2001, “
The Effects of Interparticle Interactions and Particle Size on Reversible Shear Thickening: Hard-Sphere Colloidal Dispersions
,”
J. Rheol.
0148-6055,
45
(
5
), pp.
1205
1222
.
20.
Bird
,
R. B.
,
Armstrong
,
R.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids
,
2nd ed.
,
Wiley
,
New York
.
21.
Yoshimura
,
A.
, and
Prud'homme
,
R. K.
, 1988, “
Wall Slip Corrections for Couette and Parallel Disk Viscometer
,”
J. Rheol.
0148-6055,
32
(
1
), pp.
53
67
.
22.
Hager
,
S. L.
, and
Craig
,
T. A.
, 1992, “
Fatigue Testing of High Performance Flexible Polyurethane Foam
,”
J. Cell. Plast.
0021-955X,
28
, pp.
284
303
.
23.
Lee
,
J. D.
,
So
,
J. H.
, and
Yang
,
S. M.
, 1999, “
Rheological Behavior and Stability of Concentrated Silica Suspensions
,”
J. Rheol.
0148-6055,
43
, pp.
1117
1124
.
24.
Hoffman
,
R. L.
, 1998, “
Explanations for the Cause of Shear Thickening in Concentrated Colloidal Suspensions
,”
J. Rheol.
0148-6055,
42
(
1
), pp.
111
123
.
25.
Laun
,
H. M.
,
Bung
,
R.
, and
Schmidt
,
F.
, 1991, “
Rheology of Extremely Shear Thickening Polymer Dispersions
,”
J. Rheol.
0148-6055,
35
, pp.
999
1034
.
26.
Hadjistamov
,
D.
, 1984,
Proceedings of the Ninth International Congress on Rheology
,
M. B.
Mena
,
R.
Garcfa-Rejon
, and
C.
Rangel
, eds.,
Universidad Nacional Autonoma de Mexico
,
Acapulco, Mexico
, p.
277
.
27.
Fagan
,
M.
, and
Zukoski
,
C.
, 1997, “
The Rheology of Charged Stabilized Silica Suspensions
,”
J. Rheol.
0148-6055,
41
, pp.
373
397
.
28.
Egres
,
R.
, and
Wagner
,
N.
, 2005, “
The Rheology and Microstructure of Acicular Precipitated Calcium Carbonate Colloidal Suspensions Through the Shear Thickening Transition
,”
J. Rheol.
0148-6055,
49
(
3
), pp.
719
746
.
You do not currently have access to this content.