The flow behavior in hydrocyclones is quite complex. The computational fluid dynamics method was used to simulate the flow fields inside a hydrocyclone in order to investigate its separation efficiency. In the computational fluid dynamics study of hydrocyclones, the air-core dimension is a key to predicting the mass split between the underflow and overflow. In turn, the mass split influences the prediction of the size classification curve. Generally in hydrocyclone simulations, assuming low particle volume fractions, the discrete phase effects on the continuous phase have been excluded; therefore, one-way coupling method has been used. Due to high particle consistencies, regions in some cases, especially in underflow areas, excluding discrete phase effects on continuous phase may be ineligible. In this study for an example case by consisting discrete phase effects and using two-way coupling method, simulation accuracy noticeably has been improved. Three models, the kε model, the Reynolds stress model (RSM) without considering air core, and Reynolds stress turbulence model with volume of fluid multiphase model for simulating air core, were compared for the predictions of velocity, axial, and tangential velocity distributions and separation proportion. Results by the RSM with air-core simulation and two-way coupling model, since it produces some detailed features of the turbulence and discrete phase mode effects, are clearly closer in predicting the experimental data than the other two.

1.
Bretney
,
E.
, 1891, “
Water Purifier
,” U.S. Patent No. 543 105.
2.
Kelsall
,
D. F.
, 1952, “
A Study of the Motion of Solid Particles in a Hydraulic Cyclone
,”
Trans. Inst. Chem. Eng.
0371-7496,
30
, pp.
87
108
.
3.
Kelsall
,
D. F.
, 1953, “
A Further Study on the Hydraulic Cyclone
,”
Chem. Eng. Sci.
0009-2509,
2
, pp.
254
272
.
4.
Bradley
,
D.
, 1965,
The Hydrocyclone
,
Pergamon
,
London
.
5.
Bloor
,
M. I. G.
, and
Ingham
,
D. B.
, 1973, “
Theoretical Investigation of the Flow in a Conical Hydrocyclone
,”
Trans. Inst. Chem. Eng.
0371-7496,
51
, pp.
36
41
.
6.
Bloor
,
M. I. G.
, and
Ingham
,
D. B.
, 1973, “
On the Efficiency of the Industrial Cyclone
,”
Trans. Inst. Chem. Eng.
0371-7496,
51
, pp.
173
176
.
7.
Bloor
,
M. I. G.
, and
Ingham
,
D. B.
, 1975, “
Turbulent Spin in a Cyclone
,”
Trans. Inst. Chem. Eng.
0371-7496,
53
, pp.
1
46
.
8.
Svarovsky
,
L.
, 1984,
Hydrocyclones
,
1st ed.
,
Holt, Rinehart and Winston
,
London
.
9.
Barrientos
,
A.
,
Sampaio
,
R.
, and
Concha
,
F.
, 1993, “
Effect of the Air Core on the Performance of a Hydrocyclone
,”
Proceedings of the XVIII International Mineral Processing Congress
, pp.
267
270
.
10.
Rajamani
,
R. K.
, and
Devulapalli
,
B.
, 1994, “
Hydrodynamic Modeling of Swirling Flow and Particle Classification in Large-Scale-Hydrocyclones
,”
Kona
0288-4534,
12
, pp.
95
104
.
11.
Ma
,
L.
,
Ingham
,
D. B.
, and
Wen
,
X.
, 2000, “
Numerical Modelling of the Fluid and Particle Penetration Through Small Sampling Cyclones
,”
J. Aerosol Sci.
0021-8502,
31
(
9
), pp.
1097
1119
.
12.
Dyakowski
,
T.
, and
Williams
,
R. A.
, 1995, “
Prediction of Air-Core Size and Shape in a Hydrocyclone
,”
Int. J. Min. Process.
0301-7516,
43
, pp.
1
14
.
13.
Fraser
,
S. M.
,
Abdel Rasek
,
A. M.
, and
Abdullah
,
M. Z.
, 1997, “
Computational and Experimental Investigations in a Cyclone Dust Separator
,”
Proc. Inst. Mech. Engrs., Part E: J. Process Mech. Eng.
,
211
, pp.
247
257
.
14.
He
,
P.
,
Salcudean
,
M.
, and
Gartshore
,
I. S.
, 1999, “
A Numerical Simulation of Hydrocyclones
,”
Trans. Inst. Chem. Eng.
0371-7496,
77
, pp.
429
441
.
15.
Suasnabar
,
D. J.
, 2000, “
Dense Medium Cyclone Performance, Enhancements Via Computational Modeling of the Physical Process
,” Ph.D. thesis, University of New South Wales, Sydney.
16.
Schuetz
,
S.
,
Mayer
,
G.
,
Bierdel
,
M.
, and
Piesche
,
M.
, 2004, “
Investigations on the Flow and Separation Behaviour of Hydrocyclones Using Computational Fluid Dynamics
,”
Int. J. Min. Process.
0301-7516,
73
, pp.
229
23717
.
17.
Narasimha
,
M.
,
Sripriya
,
R.
, and
Banerjee
,
P. K.
, 2005, “
CFD Modelling of Hydrocyclone—Prediction of Cut-Size
,”
Int. J. Min. Process.
0301-7516,
75
(
1-2
), pp.
53
68
.
18.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of as Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
19.
Boysan
,
F.
,
Ayers
,
W. H.
, and
Swithenbank
,
J.
, 1982, “
A Fundamental Mathematical Modelling Approach to Cyclone Design
,”
Trans. Inst. Chem. Eng.
0371-7496,
60
, pp.
222
230
.
20.
Cullivan
,
J. C.
,
Williams
,
R. A.
, and
Cross
,
C. R.
, 2003, “
Understanding the Hydrocyclone Separator Through Computational Fluid Dynamics
,”
Chem. Eng. Res. Des.
0263-8762,
81
, pp.
455
465
.
21.
Slack
,
M. D.
,
Prasad
,
R. O.
,
Bakker
,
A.
, and
Boysan
,
F.
, 2000, “
Advances in Cyclone Modeling Using Unstructured Grids
,”
Trans. IChemE, Part C
0960-3085,
78
, pp.
1098
1104
.
22.
Brennan
,
M. S.
,
Subramanian
,
V. J.
,
Rong
,
R.
,
Holtham
,
P. N.
,
Lyman
,
G. J.
, and
Napier-Munn
,
T. J.
, 2003, “
Towards a New Understanding of the Cyclone Separator
,”
Proceedings of XXII International Mineral Processing Congress
, Cape Town, South Africa, Sept. 29–Oct. 3.
23.
Mousavian
,
S. M.
, and
Najafi
,
A. F.
, 2008, “
Numerical Simulations of Gas–Liquid–Solid Flows in a Hydrocyclone Separator
,”
Arch. Appl. Mech.
0939-1533,
79
, pp.
395
409
24.
Castro
,
O.
, and
Concha
,
F.
, 1996, “
Air Core Modeling for an Industrial Hydrocyclone
,”
International Conference on Hydrocyclones ‘96
, Cambridge, UK, Apr. 2–4, pp.
229
240
.
25.
Concha
,
F.
,
Barrientos
,
A.
,
Montero
,
J.
, and
Sampio
,
R.
, 1996, “
Air Core and Roping in Hydrocyclones
,”
Int. J. Min. Process.
0301-7516,
44-45
, pp.
743
749
.
26.
Steffens
,
P. R.
,
Whiten
,
W. J.
,
Appleby
,
S.
, and
Hitchins
,
J.
, 1993, “
Prediction of Air Core Diameters for Hydrocyclones
,”
Int. J. Min. Process.
0301-7516,
39
, pp.
61
74
.
27.
Davidson
,
M. R.
, 1994, “
A Numerical Model of Liquid–Solid Flow in a Hydrocyclone With High Solids Fraction
,”
International Symposium Numerical Methods in Multiphase Flows
, ASME FED-185, pp.
29
39
.
28.
Romero
,
J.
, and
Sampaio
,
R.
, 1999, “
A Numerical Model for Prediction of the Air-Core Shape of Hydrocyclone Flow
,”
Mech. Res. Commun.
0093-6413,
26
(
3
), pp.
379
384
.
29.
Hsieh
,
K. T.
, and
Rajamani
,
R. K.
, 1991, “
Mathematical Model of the Hydrocyclone Based on the Physics of Fluid Flow
,”
AIChE J.
0001-1541,
37
, pp.
735
746
.
30.
Malhotra
,
A.
,
Branion
,
R. M. R.
, and
Hauptmann
,
E. G.
, 1994, “
Modeling the Flow in a Hydrocyclone
,”
Can. J. Chem. Eng.
0008-4034,
72
, pp.
953
960
.
31.
Davidson
,
M. R.
, 1988, “
Similarity Solutions for Flow in Hydrocyclones
,”
Chem. Eng. Sci.
0009-2509,
43
(
7
), pp.
1499
1505
.
32.
Concha
,
F.
,
Castro
,
B.
,
Ovalle
,
E.
, and
Romero
,
J.
, 1998, “
Numerical Simulation of the Flow Pattern in a Hydrocyclone
International Conference Innovation in Physical Separation Technology
, Falmouth, UK, Jun. 4–5, pp.
35
60
.
33.
Pericleous
,
K. A.
, and
Rhodes
,
N.
, 1986, “
The Hydrocyclone Classifier—A Numerical Approach
,”
Int. J. Min. Process.
0301-7516,
17
, pp.
23
43
.
34.
Cullivan
,
J. C.
,
Williams
,
R. A.
, and
Cross
,
C. R.
, 2000, “
Verification of Theoretical 3D-Flow in a Hydrocyclone Using Tomography
,”
Fourth World Congress for Particle Technology
, Sydney, pp.
1
9
.
35.
Brennan
,
M. S.
,
Holtham
,
P. N.
,
Rong
,
R.
, and
Lyman
,
G. J.
, 2002, “
Computational Fluid Dynamic Simulation of Dense Medium Cyclones
,”
Proceedings of the Ninth Australian Coal Preparation Conference
, Yeppoon, Australia, Oct. 13–17, Paper No. B3.
36.
Hsieh
,
K. T.
, 1988. “
A Phenomenological Model of the Hydrocyclone
,” Ph.D. thesis, University of Utah, Salt Lake, UT.
37.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
0022-1120,
227
, pp.
245
274
.
38.
Devulapalli
,
B.
, and
Rajamani
,
R. K.
, 1994, “
Application of LDV to the Modelling of Particle Size Classification in Industrial Hydrocyclones
,”
Parallel Computing in Multiphase Flow Systems Simulations
, Vol.
191
, ASME, New York, pp.
41
48
.
39.
Devulapalli
,
B.
, and
Rajamani
,
R. K.
, 1996, “
A Comprehensive CFD Model for Particle Size Classification in Industrial Hydrocyclones
,”
Hydrocyclones ‘96
, Cambridge, UK, pp.
83
104
.
40.
Devulapalli
,
B.
, 1997, “
Hydrodynamic Modelling of Solid-Liquid Flows in Large Scale Hydrocyclones
,” Ph.D. thesis, University of Utah, Salt Lake, UT.
41.
Baxter
,
L. L.
, and
Smith
,
P. J.
, 1993, “
Turbulent Dispersion of Particles
,”
Energy Fuels
0887-0624,
7
, pp.
852
859
.
42.
Boivin
,
M.
,
Simonin
,
O.
, and
Squires
,
K. D.
, 2000, “
On the Prediction of Gas-Solid Flows With Two-Way Coupling Using Large Eddy Simulation
,”
Phys. Fluids
1070-6631,
12
, pp.
2080
2090
.
43.
Portela
,
L. M.
, and
Oliemans
,
R. V. A.
, 2001, “
Direct and Large Eddy Simulation of Particle-Laden Flows Using the Point Particle Approach
,”
Direct and Large Eddy Simulation IV
,
B. J.
Geurts
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
53
460
.
44.
Millelli
,
M.
,
Smith
,
B. L.
, and
Lakehal
,
D.
, 2001, “
Large-Eddy Simulation of Turbulent Shear Flows Laden With Bubbles
,”
Direct and Large Eddy Simulation IV
,
B. J.
Geurts
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
61
470
.
45.
Ding
,
J.
, and
Gidaspow
,
D.
, 1990, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
0001-1541,
36
, pp.
523
528
.
46.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
, 1992, “
Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach
,”
Fluidization VII, Proceedings of the Seventh Engineering Foundation Conference on Fluidization
, pp.
75
82
.
47.
Roco
,
M. C.
, 1993,
Particulate Two-Phase Flow
(
Butterworth-Heinemann Series in Chemical Engineering
),
Butterworth-Heinemann
,
Boston
.
48.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London, England
.
49.
Gatski
,
T. B.
,
Hussaini
,
M. Y.
, and
Lumley
,
J. L.
, 1996,
Simulation and Modeling of Turbulent Flows
,
Oxford University Press
,
New York
.
50.
Ishii
,
M.
, and
Hibiki
,
T.
, 2005,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer-Verlag
,
New York
.
51.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic
,
New York
.
52.
Auton
,
T. R.
, 1987, “
The Lift Force on a Spherical Body in a Rotational Flow
,”
J. Fluid Mech.
0022-1120,
183
, pp.
199
218
.
53.
Crowe
,
C.
,
Sommerfeld
,
M.
,
Tsuji
,
Y.
, 1998,
Multiphase Flows With Droplets and Particles
,
CRC
,
Boca Raton, FL
.
54.
Udaya Bhaskar
,
K.
,
Rama Murthy
,
Y.
,
Ramakrishnan
,
N.
,
Srivastava
,
J. K.
,
Supriya
,
S.
, and
Vimal
,
K.
, 2007, “
CFD Validation for Flyash Particle Classification in Hydrocyclones
,”
Minerals Eng.
0892-6875,
20
, pp.
290
302
.
55.
Stovin
,
V. R.
, and
Saul
,
A. J.
, 1998, “
A Computational Fluid Dynamics (CFD) Particle Tracking Approach to Efficiency Prediction
,”
Water Sci. Technol.
0273-1223,
37
(
1
), pp.
285
293
.
56.
Nowakowski
,
A. F.
,
Cullivan
,
J. C.
,
Williams
,
R. A.
, and
Dyakowski
,
T.
, 2004, “
Application of CFD to Modelling of the Flow in Hydrocyclones. Is This a Realizable Option or Still a Research Challenge?
,”
Minerals Eng.
0892-6875,
17
, pp.
661
669
.
You do not currently have access to this content.