The tensile fracture strength of a sandwich panel, with a center-cracked core made from an elastic-brittle diamond-celled honeycomb, is explored by analytical models and finite element simulations. The crack is on the midplane of the core and loading is normal to the faces of the sandwich panel. Both the analytical models and finite element simulations indicate that linear elastic fracture mechanics applies when a K-field exists on a scale larger than the cell size. However, there is a regime of geometries for which no K-field exists; in this regime, the stress concentration at the crack tip is negligible and the net strength of the cracked specimen is comparable to the unnotched strength. A fracture map is developed for the sandwich panel with axes given by the sandwich geometry. The effect of a statistical variation in the cell-wall strength is explored using Weibull theory, and the consequences of a stochastic strength upon the fracture map are outlined.

1.
Ashby
,
M. F.
, 1983, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
0360-2133,
14A
, pp.
1755
1783
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Pergamon
,
Oxford
.
3.
Fleck
,
N. A.
, and
Qiu
,
X.
, 2007, “
The Damage Tolerance of Elastic-Brittle, Two Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
0022-5096,
55
(
3
), pp.
562
588
.
4.
Romijn
,
N. E.
, and
Fleck
,
N. A.
, 2007, “
The Fracture Toughness of Planar Lattices: Imperfection Sensitivity
,”
J. Mech. Phys. Solids
0022-5096,
55
(
12
), pp.
2538
2564
.
5.
Quintana Alonso
,
I.
, and
Fleck
,
N. A.
, 2007, “
Damage Tolerance of an Elastic-Brittle Diamond-Celled Honeycomb
,”
Scr. Mater.
1359-6462,
56
(
8
), pp.
693
696
.
6.
Huang
,
J. S.
, and
Gibson
,
L. J.
, 1991, “
Fracture Toughness of Brittle Honeycombs
,”
Acta Metall. Mater.
0956-7151,
39
(
7
), pp.
1617
1626
.
7.
Huang
,
J. S.
, and
Chou
,
C. Y.
, 1999, “
Survival Probability for Brittle Honeycombs Under In-Plane Biaxial Loading
,”
J. Mater. Sci.
0022-2461,
34
(
20
), pp.
4945
4954
.
8.
Zupan
,
M.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2004, “
The Out-of-Plane Compressive Behaviour of Woven-Core Sandwich Plates
,”
Eur. J. Mech. A/Solids
0997-7538,
23
(
3
), pp.
411
421
.
9.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1985,
The Stress Analysis of Cracks Handbook
,
St. Louis
,
MO
.
10.
Georgiadis
,
H. G.
, and
Papadopoulos
,
G. A.
, 1988, “
Cracked Orthotropic Strip With Clamped Boundaries
,”
J. Appl. Math. Phys.
,
39
(
4
), pp.
573
578
.
11.
Bowie
,
O. L.
, and
Freese
,
C. E.
, 1972, “
Central Crack in Plane Orthotropic Rectangular Sheet
,”
Int. J. Fract. Mech.
0020-7268,
8
(
1
), pp.
49
57
.
12.
Savin
,
G. N.
, 1961,
Stress Concentration Around Holes
,
Pergamon
,
Oxford
.
13.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1965, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
Int. J. Fract. Mech.
0020-7268,
1
(
3
), pp.
189
203
.
14.
Jayatilaka
,
A. de S.
, 1979,
Fracture of Engineering Brittle Materials
,
Applied Science
,
London
.
15.
Huang
,
J. S.
, and
Lin
,
J. Y.
, 1996, “
Fatigue of Cellular Materials
,”
Acta Mater.
1359-6454,
44
(
1
), pp.
289
296
.
16.
Olurin
,
O. B.
,
McCullough
,
K. Y. G.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 2001, “
Fatigue Crack Propagation in Aluminium Alloy Foams
,”
Int. J. Fatigue
0142-1123,
23
, pp.
375
382
.
17.
Burman
,
M.
, and
Zenkert
,
D.
, 1997, “
Fatigue of Foam Core Sandwich Beams
,”
Int. J. Fatigue
0142-1123,
19
(
7
), pp.
551
578
.
This content is only available via PDF.
You do not currently have access to this content.