The objective of this study was to identify the microstructural mechanisms related to the high strength and ductile behavior of 2139-Al, and how dynamic conditions would affect the overall behavior of this alloy. Three interrelated approaches, which span a spectrum of spatial and temporal scales, were used: (i) The mechanical response was obtained using the split Hopkinson pressure bar, for strain-rates ranging from 1.0×103s to 1.0×104s1. (ii) First principles density functional theory calculations were undertaken to characterize the structure of the interface and to better understand the role played by Ag in promoting the formation of the Ω phase for several Ω-Al interface structures. (iii) A specialized microstructurally based finite element analysis and a dislocation-density based multiple-slip formulation that accounts for an explicit crystallographic and morphological representation of Ω and θ precipitates and their rational orientation relations were conducted. The predictions from the microstructural finite element model indicated that the precipitates continue to harden and also act as physical barriers that impede the matrix from forming large connected zones of intense plastic strain. As the microstructural FE predictions indicated, and consistent with the experimental observations, the combined effects of θ and Ω, acting on different crystallographic orientations, enhance the strength and ductility, and reduce the susceptibility of 2139-Al to shear strain localization due to dynamic compressive loads.

1.
Eschbach
,
L.
,
Solenthaler
,
C.
,
Uggowitzer
,
P. J.
, and
Speidel
,
M. O.
, 1999, “
Strength and Fracture Toughness of Spray Formed Al-Cu-Mg-Ag Alloys
,”
Mater. Sci. Technol.
0267-0836,
15
(
8
), pp.
926
932
.
2.
Polmear
,
I. J.
, and
Couper
,
M. J.
, 1988, “
Design and Development of an Experimental Wrought Aluminium-Alloy for Use at Elevated-Temperatures
,”
Metall. Trans. A
0360-2133,
19
(
4
), pp.
1027
1035
.
3.
Hono
,
K.
,
Sano
,
N.
,
Babu
,
S. S.
,
Okano
,
R.
, and
Sakurai
,
T.
, 1993, “
Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys
,”
Acta Metall. Mater.
0956-7151,
41
(
3
), pp.
829
838
.
4.
Howe
,
J. M.
,
Basile
,
D. P.
,
Prabhu
,
N.
, and
Hatalis
,
M. K.
, 1988, “
Minimum Detectable Solute Concentration in Atomic-Resolution Transmission Electron-Microscopy
,”
Acta Crystallogr. A
,
44
, pp.
449
461
. 0108-7673
5.
Cho
,
A.
, and
Bes
,
B.
, 2006, “
Damage Tolerance Capability of an Al-Cu-Mg-Ag Alloy (2139)
,”
Mater. Sci. Forum
0255-5476,
519–521
, pp.
603
608
.
6.
Ma
,
J.
,
Zikry
,
M.
,
Ashamwi
,
W.
, and
Brenner
,
D.
, 2007, “
Hierarchical Modeling of Nanoindentation and Microstructural Evolution of Face-Centered Cubic Gold Aggregates
,”
J. Mater. Res.
0884-2914,
22
(
3
), pp.
627
643
.
7.
Ortiz
,
M.
,
Cuitino
,
A. M.
,
Knap
,
J.
, and
Koslowski
,
M.
, 2001, “
Mixed Atomistic Continuum Models of Material Behavior: The Art of Transcending Atomistics and Informing Continua
,”
MRS Bull.
0883-7694,
26
(
3
), pp.
216
221
.
8.
Kolsky
,
H.
, 1949, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
62
, pp.
676
700
.
9.
Lifshitz
,
J.
, and
Leber
,
H.
, 1994, “
Data-Processing in the Split Hopkinson Pressure Bar Tests
,”
Int. J. Impact Eng.
0734-743X,
15
(
6
), pp.
723
733
.
10.
Kresse
,
G.
, and
Hafner
,
J.
, 1993, “
Ab Initio Molecular-Dynamics for Liquid-Metals
,”
Phys. Rev. B
0163-1829,
47
(
1
), pp.
558
561
.
11.
Kresse
,
G.
, and
Hafner
,
J.
, 1994, “
Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium
,”
Phys. Rev. B
0163-1829,
49
(
20
), pp.
14251
14269
.
12.
Perdew
,
J.
,
Chevary
,
J. A.
, and
Vosko
,
S. H.
, 1992, “
Atoms, Molecules, Solids, and Surfaces-Applications of the Generalized Gradient Approximation for Exchange and Correlation
,”
Phys. Rev. B
0163-1829,
46
(
11
), pp.
6671
6687
.
13.
Vosko
,
S.
,
Wilk
,
L.
, and
Nusair
,
M.
, 1980, “
Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations—A Critical Analysis
,”
Can. J. Phys.
0008-4204,
58
(
8
), pp.
1200
1211
.
14.
Vanderbilt
,
D.
, 1990, “
Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism
,”
Phys. Rev. B
0163-1829,
41
(
11
), pp.
7892
7895
.
15.
Monkhorst
,
H. J.
, and
Pack
,
J. D.
, 1976, “
Special Points for Brillouin-Zone Integrations
,”
Phys. Rev. B
0556-2805,
13
(
12
), pp.
5188
5192
.
16.
Hutchinson
,
C. R.
,
Fan
,
X.
,
Pennycook
,
S.
, and
Shiflet
,
G.
, 2001, “
On the Origin of the High Coarsening Resistance of Ω
Plates in Al-Cu-Mg-Ag Alloys,”
Acta Mater.
1359-6454,
49
, pp.
2827
2841
.
17.
Orsini
,
V.
, and
Zikry
,
M.
, 2001, “
Void Growth and Interaction in Crystalline Materials
,”
Int. J. Plast.
0749-6419,
17
(
10
), pp.
1393
1417
.
18.
Zikry
,
M. A.
, and
Kao
,
M.
, 1996, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials With High Angle Grain Boundaries
,”
J. Mech. Phys. Solids
0022-5096,
44
(
11
), pp.
1765
1798
.
19.
Ashmawi
,
W.
, and
Zikry
,
M.
, 2002, “
Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
(
1
), pp.
88
96
.
20.
Mughrabi
,
H.
, 1987, “
A Tow Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals
,”
Mater. Sci. Eng.
0025-5416,
85
, pp.
15
31
.
21.
Kameda
,
T.
, and
Zikry
,
M. A.
, 1998, “
Three Dimensional Dislocation-Based Crystalline Constitutive Formulation for Ordered Intermetallics
,”
Scr. Mater.
1359-6462,
38
(
4
), pp.
631
636
.
22.
Wang
,
S. C.
, and
Starink
,
M. J.
, 2005, “
Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys
,”
Int. Mater. Rev.
0950-6608,
50
, pp.
193
215
.
23.
Silcock
,
J.
,
Heal
,
T. J.
, and
Hardy
,
H. K.
, 1955, “
The Structural Ageing Characteristics of Ternary Aluminium-Copper Alloys With Cadmium, Indium or Tin
,”
J. Inst. Met.
0020-2975,
84
(
1
), pp.
23
31
.
24.
Auld
,
J. H.
, 1972, “
Structure of a Metastable Precipitate in an Al-Cu-Mg-Ag Alloy
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
0567-7394,
28
, p.
S98
.
25.
Auld
,
J. H.
, 1986, “
Structure of Metastable Precipitate in Al-Cu-Mg-Ag Alloys
,”
Mater. Sci. Technol.
0267-0836,
2
(
8
), pp.
784
787
.
26.
Kerry
,
S.
, and
Scott
,
V. D.
, 1984, “
Structure and Orientation Relationship of Precipitates Formed in Al-Cu-Mg-Ag Alloys
,”
Meat Sci.
0309-1740,
18
(
6
), pp.
289
294
.
27.
Garg
,
A.
, and
Howe
,
J. M.
, 1991, “
Convergent-Bean Electron-Diffraction Analysis of the Omega Phase in an Al-4.0 Cu-0.5 Mg-0.5 Ag Alloy
,”
Acta Metall. Mater.
0956-7151,
39
(
8
), pp.
1939
1946
.
28.
Knowles
,
K. M.
, and
Stobbs
,
W. M.
, 1988, “
The Structure of (111) Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys
,”
Acta Crystallogr., Sect. B: Struct. Sci.
0108-7681,
44
, pp.
207
227
.
29.
Ringer
,
S.
, and
Hono
,
K.
, 2000, “
Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies
,”
Mater. Charact.
1044-5803,
44
(
1–2
), pp.
101
131
.
30.
Bonnet
,
R.
, and
Loubradou
,
M.
, 2002, “
Crystalline Defects in a BCT Single Crystal Obtained by Unidirectional Solidification Along
,”
Phys. Status Solidi A
0031-8965,
194
(
1
), pp.
173
191
.
31.
Ignat
,
M.
, and
Durand
,
F.
, 1976, “
Deformation Lines on Al2Cu Single Crystals After Creep in Compression
,”
Scr. Metall.
0036-9748,
10
(
7
), pp.
623
626
.
32.
Giacovazzo
,
C.
,
Monaco
,
H. L.
,
Artioli
,
G.
,
Viterbo
,
D.
,
Ferraris
,
G.
,
Gilli
,
G.
,
Zanotti
,
G.
, and
Catti
,
M.
, 2002, “
Fundamentals of Crystallography
,”
IUCr Texts on Crystallography
,
C.
Giacovazzo
, ed.,
Oxford University
,
New York
, pp.
74
76
.
33.
Randle
,
V.
, 1993,
The Measurement of Grain Boundary Geometry
(
Electron Microscopy in Materials Science Series
)
Institute of Physics
,
Bristol, UK
.
34.
Garg
,
A.
,
Chang
,
Y. C.
, and
Howe
,
J. M.
, 1990, “
Precipitation of the Phase in an Al-4.0Cu-0.5Mg Alloy
,”
Scr. Metall. Mater.
0956-716X,
24
, pp.
677
680
.
35.
Zhu
,
A. W.
,
Shiflet
,
G. J.
, and
Starke
,
E. A.
, 2006, “
First Principles Calculations for Alloy Design of Moderate Temperature Age-Hardenable Al Alloys
,”
Mater. Sci. Forum
0255-5476,
519–521
, pp.
35
43
.
36.
Smithells
,
C. J.
, 2004,
Smithells Metals Reference Book
, Vol.
1
,
8th ed.
,
W. F.
,
Gale
, and
T. C.
,
Totemeier
, eds.,
Elsevier
,
New York
.
37.
Ali
,
A. A.
,
Podus
,
G. N.
, and
Sirenko
,
A. F.
, 1979, “
Determining the Thermal Activation Parameters of Plastic Deformation of Metals From Data on the Kinetics of Creep and Relaxation of Mechanical Stresses
,”
Strength Mater.
0039-2316,
11
(
5
), pp.
496
500
.
38.
Zikry
,
M.
, and
Kao
,
M.
, 1997, “
Inelastic Microstructural Failure Modes in Crystalline Materials: The S33A ANS S11 High Angle Grain Boundaries
,”
Int. J. Plast.
0749-6419,
13
(
4
), pp.
403
434
.
39.
Zikry
,
M.
, 1994, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
0045-7949,
50
(
3
), pp.
337
350
.
40.
Koda
,
S.
,
Takahashi
,
S.
, and
Matsuura
,
K.
, 1963, “
Direct Observation of Interaction of Dislocations With Wij Precipitates in an Aluminium-3.8 Wt.-Percent Copper Alloy
,”
J. Inst. Met.
0020-2975,
91
(
7
), pp.
229
234
.
41.
Li
,
B. Q.
, and
Wawner
,
F. E.
, 1998, “
Dislocation Interaction With Semicoherent Precipitates ([MCartα∗][MΩCart] Phase) in Deformed Al-Cu-Mg-Ag Alloy
,”
Acta Mater.
1359-6454,
46
(
15
), pp.
5483
5490
.
42.
Nourbakhsh
,
S.
, and
Nutting
,
J.
, 1980, “
High-Strain Deformation of an Aluminium-4% Copper Alloy in the Supersaturated and Aged Conditions
,”
Acta Metall.
0001-6160,
28
(
3
), pp.
357
365
.
43.
Polmear
,
I. J.
, 2006,
Light Alloys: From Traditional Alloys to Nanocrystals
,
Elsevier/Butterworth-Heinemann
,
Burlington, MA
, pp.
153
154
.
44.
Sanders
,
T.
, and
Starke
,
E. A.
, 1982, “
The Effect of Slip Distribution on the Monotonic and Cyclic Ductility of Al-Li Binary-Alloys
,”
Acta Metall.
0001-6160,
30
(
5
), pp.
927
939
.
45.
Polmear
,
I. J.
, 2006,
Light Alloys: From Traditional Alloys to Nanocrystals
,
Elsevier/Butterworth-Heinemann
,
Burlington, MA
, pp.
53
56
.
46.
Nie
,
J. F.
, and
Muddle
,
B. C.
, 2001, “
On the Form of the Age-Hardening Response in High Strength Aluminium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
448
451
.
47.
Nie
,
J. F.
,
Muddle
,
B. C.
, and
Polmear
,
I. J.
, 1996, “
The Effect of Precipitate Shape and Orientation on Dispersion Strengthening in High Strength Aluminum Alloys
,”
Mater. Sci. Forum
0255-5476,
217–222
, pp.
1257
1263
.
You do not currently have access to this content.