There is an increasing interest in the use of composites for marine/naval structures to reduce weight and maintenance cost, and to improve hydrodynamic and/or structural performance. In particular, recent works suggest that the use of a lightweight, soft core layer can significantly reduce the load transfer to the back layer of a sandwich structure when subjected to shock or impulse loads. The objective of this work is to investigate the role of fluid-structure interaction (FSI) and shock-bubble interaction in the transient response of composite structures during underwater explosions (UNDEX). The spatial distribution of UNDEX loads is different from uniform planar shocks due to the spherically propagating pressure front, and the temporal characteristics are also different due to the importance of shock-bubble interactions. Both effects influence the FSI response of the composite structure. A previously validated 2D Eulerian–Lagrangian numerical method is used to investigate fluid-structure and shock-bubble interaction effects during UNDEX near composite structures. Via a series of numerical experiments, the relative importance of different effects, namely, the Taylor’s FSI effect (1963, “The Pressure and Impulse of Submarine Explosion Waves on Plates” Scientific Papers of G. I. Taylor, 3, pp. 287–303), the bending/stretching effect, the core compression effect, and the boundary effect, are quantitatively and qualitatively evaluated. Insights for practical modeling, analysis, and design of blast-resistant sandwich structures are also drawn from the analysis.

1.
Taylor
,
G. I.
, 1963, “
The Pressure and Impulse of Submarine Explosion Waves on Plates
,”
The Scientific Papers of G. I. Taylor
, Vol.
3
, Cambridge University Press, Cambridge, pp.
287
303
.
2.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2006, “
Nonlinear Compressibility Effects in Fluid-Structure Interaction and Their Implications on the Air-Blast Loading of Structures
,”
J. Appl. Phys.
0021-8979,
100
, p.
063519
.
3.
Kambouchev
,
N.
,
Radovitzky
,
R.
, and
Noels
,
L.
, 2007, “
Fluid-Structure Interaction Effects in the Dynamic Response of Free-Standing Plates to Uniform Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1042
1045
.
4.
Liu
,
Z.
, and
Young
,
Y. L.
, 2008, “
Transient Response of Submerged Plates Subject to Underwater Shock Loading: An Analytical Perspective
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
044504
.
5.
Xue
,
Z.
, and
Hutchinson
,
J. W.
, 2003, “
Preliminary Assessment of Sandwich Plates Subject to Blast Loads
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
687
705
.
6.
Xue
,
Z.
, and
Hutchinson
,
J. W.
, 2004, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
1283
1305
.
7.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
, 2004, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
386
401
.
8.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2005, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2347
2383
.
9.
Hutchinson
,
J. W.
, and
Xue
,
Z.
, 2005, “
Metal Sandwich Plates Optimized for Pressure Impulses
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
545
569
.
10.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2006, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
2242
2280
.
11.
Espinosa
,
H. D.
,
Lee
,
S.
, and
Moldovan
,
N.
, 2006, “
A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading
,”
Exp. Mech.
0014-4851,
46
, pp.
805
824
.
12.
Librescu
,
L.
,
Oh
,
S. Y.
, and
Hohe
,
J.
, 2006, “
Dynamic Response of Anisotropic Sandwich Flat Panels to Underwater and In-Air Explosions
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3794
3816
.
13.
Liang
,
Y.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2007, “
The Response of Metallic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
81
99
.
14.
Rabczuk
,
T.
,
Samaniego
,
E.
, and
Belytschko
,
T.
, 2007, “
Simplified Model for Predicting Impulsive Loads on Submerged Structures to Account for Fluid-Structure Interaction
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
163
177
.
15.
McShane
,
G. J.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2007, “
The Underwater Blast Resistance of Metallic Sandwich Beams With Prismatic Lattice Cores
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
352
364
.
16.
McMeeking
,
R. M.
,
Spuskanyuk
,
A. V.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2008, “
An Analytic Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
478
496
.
17.
Cole
,
R. H.
, 1965,
Underwater Explosions
,
Dover
,
New York
.
18.
Wardlaw
,
J. A. B.
, and
Luton
,
J. A.
, 2000, “
Fluid-Structure Interaction Mechanisms for Close-In Explosions
,”
Shock Vib.
1070-9622,
7
, pp.
265
275
.
19.
Mair
,
H. U.
, 1999, “
Benchmarks for Submerged Structure Response to Underwater Explosions
,”
Shock Vib.
1070-9622,
6
, pp.
169
181
.
20.
Mouritz
,
A. P.
,
Saunders
,
D. S.
, and
Buckley
,
S.
, 1993,
Fifth Australian Aeronautical Conference
,
Regent Hotel
,
Melbourne, Australia
.
21.
Mourltz
,
A. P.
, 1996, “
The Effect of Underwater Explosion Shock Loading on the Flexural Properties of GRP Laminates
,”
Int. J. Impact Eng.
0734-743X,
18
, pp.
129
139
.
22.
McCoy
,
R. W.
, and
Sun
,
C. T.
, 1997, “
Fluid-Structure Interaction Analysis of a Thick-Section Composite Cylinder Subjected to Underwater Blast Loading
,”
Compos. Struct.
0263-8223,
37
, pp.
45
55
.
23.
Liu
,
Z.
,
Xie
,
W.
, and
Young
,
Y. L.
, 2009, “
Numerical Modeling of Complex Interactions Between Underwater Shocks and Composite Structures
,”
Comput. Mech.
0178-7675,
43
, pp.
239
251
.
24.
Xie
,
W.
,
Liu
,
Z.
, and
Young
,
Y. L.
, 2009, “
Application of a Coupled Eulerian-Lagrangian Method to Simulate Interactions Between Deformable Composite Structures and Compressible Multiphase Flow
,”
Int. J. Numer. Methods Eng.
0029-5981, under review.
25.
Liu
,
T. G.
,
Khoo
,
B. C.
, and
Xie
,
W.
, 2004, “
Isentropic One-Fluid Modelling of Unsteady Cavitating Flow
,”
J. Comput. Phys.
0021-9991,
201
, pp.
80
108
.
26.
Kambouchev
,
N.
,
Noels
,
L.
, and
Radovitzky
,
R.
, 2007, “
Numerical Simulation of the Fluid-Structure Interaction Between Air Blast Waves and Free-Standing Plates
,”
Comput. Struct.
0045-7949,
85
, pp.
923
931
.
27.
Xie
,
W.
,
Young
,
Y. L.
,
Liu
,
T. G.
, and
Khoo
,
B. C.
, 2007, “
A Smoothed Finite Element Method for Mechanics Problems
,”
Compos. Mech.
,
40
, pp.
667
681
.
28.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
29.
Liu
,
T. G.
,
Khoo
,
B. C.
, and
Yeo
,
K. S.
, 2003, “
Ghost Fluid Method for Strong Shock Impacting on Material Interface
,”
J. Comput. Phys.
0021-9991,
190
, pp.
651
681
.
30.
ABAQUS, 2005, Version 6.6 Documentation, ABAQUS, Inc., Pawtucket, RI.
31.
Cummings
,
J.
,
Aivazis
,
M.
,
Samtaney
,
R.
,
Radovitzky
,
R.
,
Mauch
,
S.
, and
Meiron
,
D.
, 2001, “
A Virtual Test Facility for the Simulation of Dynamic Response in Materials
,”
J. Supercomput.
0920-8542,
23
, pp.
39
50
.
32.
Arienti
,
M.
,
Hung
,
P.
,
Morano
,
E.
, and
Shepherd
,
J. E.
, 2003, “
A Level Set Approach to Eulerian-Lagrangian Coupling
,”
J. Comput. Phys.
0021-9991,
185
, pp.
213
251
.
33.
Tam
,
D.
,
Radovitzky
,
R.
, and
Samtaney
,
R.
, 2005, “
An Algorithm for Modelling the Interaction of a Flexible Rod With a Two-dimensional High-Speed Flow
,”
Int. J. Numer. Methods Eng.
0029-5981,
64
, pp.
1057
1077
.
34.
Cirak
,
F.
, and
Radovitzky
,
R.
, 2005, “
A Lagrangian-Eulerian Shell-Fluid Coupling Algorithm Based on Level Sets
,”
Comput. Struct.
0045-7949,
88
, pp.
491
498
.
35.
Deiterding
,
R.
,
Radovitzky
,
R.
,
Mauch
,
S. P.
,
Noels
,
L.
,
Cummings
,
J. C.
, and
Meiron
,
D. I.
, 2006, “
A Virtual Test Facility for the Efficient Simulation of Solid Material Response Under Strong Shock and Detonation Wave Loading
,”
Eng. Comput.
0263-4759,
22
, pp.
325
347
.
36.
Cirak
,
F.
,
Deiterding
,
R.
, and
Mauch
,
S. P.
, 2007, “
Large-Scale Fluid-Structure Interaction Simulation of Viscoplastic and Fracturing Thin-Shells Subjected to Shocks and Detonations
,”
Comput. Struct.
0045-7949,
85
, pp.
1049
1065
.
37.
Deshpande
,
V. S.
,
Heaver
,
A.
, and
Fleck
,
N. A.
, 2006, “
An Underwater Shock Simulator
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
, pp.
1021
1041
.
You do not currently have access to this content.