A finite element method for the simulation of dynamic cracks in thin shells and its applications to quasibrittle fracture problem are presented. Discontinuities in the translational and angular velocity fields are introduced to model cracks by the extended finite element method. The proposed method is implemented for the Belytschko–Lin–Tsay shell element, which has high computational efficiency because of its use of a one-point integration scheme. Comparisons with elastoplastic crack propagation experiments involving quasibrittle fracture show that the method is able to reproduce experimental fracture patterns quite well.

1.
Belytschko
,
T.
, and
Black
,
T.
, 1999, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
(
5
), pp.
601
620
.
2.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, 1999, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
(
1
), pp.
131
150
.
3.
Hansbo
,
A.
, and
Hansbo
,
P.
, 2004, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
3523
3540
.
4.
Mergheim
,
J.
,
Kuhl
,
E.
, and
Steinmann
,
P.
, 2005, “
A Finite Element Method for the Computational Modelling of Cohesive Cracks
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
276
289
.
5.
Song
,
J. H.
,
Areias
,
P. M. A.
, and
Belytschko
,
T.
, 2006, “
A Method for Dynamic Crack and Shear Band Propagation With Phantom Nodes
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
, pp.
868
893
.
6.
Areias
,
P. M. A.
,
Song
,
J. H.
, and
Belytschko
,
T.
, 2005, “
A Finite-Strain Quadrilateral Shell Element Based on Discrete Kirchhoff-Love Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
64
, pp.
1166
1206
.
7.
Areias
,
P. M. A.
,
Song
,
J. H.
, and
Belytschko
,
T.
, 2006, “
Analysis of Fracture in Thin Shells by Overlapping Paired Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5343
5360
.
8.
Areias
,
P. M. A.
, and
Belytschko
,
T.
, 2006, “
A Comment on the Article: A Finite Element Method for Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
275
1276
.
9.
Belytschko
,
T.
,
Chen
,
H.
,
Xu
,
J.
, and
Zi
,
G.
, 2003, “
Dynamic Crack Propagation Based on Loss of Hyperbolicity With a New Discontinuous Enrichment
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
1873
1905
.
10.
Réthoré
,
J.
,
Gravouil
,
A.
, and
Combescure
,
A.
, 2005, “
An Energy-Conserving Scheme for Dynamic Crack Growth Using the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
631
659
.
11.
Elguedj
,
T.
,
Gravouil
,
A.
, and
Combescure
,
A.
, 2006, “
Appropriate Extended Functions for X-Fem Simulation of Plastic Fracture Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
501
515
.
12.
Cirak
,
F.
,
Ortiz
,
M.
, and
Pandolfi
,
A.
, 2005, “
A Cohesive Approach to Thin-Shell Fracture and Fragmentation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
2604
2618
.
13.
Areias
,
P. M. A.
, and
Belytschko
,
T.
, 2005, “
Nonlinear Analysis of Shells With Arbitrary Evolving Cracks Using XFEM
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
384
415
.
14.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three–Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1267
1282
.
15.
Armero
,
F.
, and
Ehrlich
,
D.
, 2006, “
Finite Element Methods for the Multi-Scale Modeling of Softening Hinge Lines in Plates at Failure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
1283
1324
.
16.
Chao
,
T. W.
, and
Shepherd
,
J. E.
, 2002, “
Fracture Response of Externally-Flawed Cylindrical Shells to Internal Gaseous Detonation Loading
,”
Emerging Technologies in Fluids, Structures, and Fluid/Structure Interactions
,
ASME Pressure Vessels and Piping Conference
, Vancouver, BC, pp.
85
98
.
17.
Ahmad
,
S.
,
Irons
,
B. B.
, and
Zienkiewicz
,
O. C.
, 1970, “
Analysis of Thick and Thin Shell Structures by Curved Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
, pp.
419
451
.
18.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part 2, Two dimensional Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
27
, pp.
167
181
.
19.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part 1, Three Dimensional Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
26
, pp.
331
362
.
20.
Belytschko
,
T.
,
Lin
,
J. I.
, and
Tsay
,
C. S.
, 1984, “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
42
, pp.
225
251
.
21.
Belytschko
,
T.
,
Wong
,
B. L.
, and
Chiang
,
H. Y.
, 1992, “
Advances in One-Point Quadrature Shell Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
96
, pp.
93
107
.
22.
Belytschko
,
T.
, and
Bachrach
,
W. E.
, 1986, “
Efficient Implementation of Quadrilaterals With High Coarse-Mesh Accuracy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
54
, pp.
279
301
.
23.
Belytschko
,
T.
, and
Leviathan
,
I.
, 1994, “
Physical Stabilization of the 4-Node Shell Element With One Point Quadrature
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
113
, pp.
321
350
.
24.
Papoulia
,
K. D.
,
Sam
,
C. H.
, and
Vavasis
,
S. A.
, 2003, “
Time Continuity in Cohesive Finite Element Modeling
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
679
701
.
25.
Chao
,
T. W.
, 2004, “
Gaseous Detonation-Driven Fracture of Tubes
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
26.
Johnson
,
F. A.
, and
Radon
,
J. C.
, 1975, “
Evaluation of Fracture Energy of Aluminum Alloys
,”
J. Test. Eval.
0090-3973,
3
, pp.
364
367
.
27.
Johnson
,
F. A.
, and
Radon
,
J. C.
, 1976, “
Fracture Energy and Crack Tunnelling
,”
J. Test. Eval.
0090-3973,
4
, pp.
209
217
.
28.
Roychowdhury
,
S.
,
Roy
,
Y. D. A.
, and
Dodds
,
R. H.
, Jr.
, 2002, “
Ductile Tearing in Thin Aluminum Panels: Experiments and Analyses Using Large-Displacement, 3-D Surface Cohesive Elements
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
983
1002
.
29.
Beltman
,
W. M.
, and
Shepherd
,
J. E.
, 2002, “
Linear Elastic Response of Tubes to Internal Detonation Loading
,”
J. Sound Vib.
0022-460X,
252
, pp.
617
655
.
You do not currently have access to this content.