Abstract

Micro-electro-mechanical systems (MEMSs) often use beam or plate shaped conductors that can be very thin—with h/LO(102103) (in terms of the thickness h and length L of the beam or side of a square plate). Such MEMS devices find applications in microsensors, micro-actuators, microjets, microspeakers, and other systems where the conducting beams or plates oscillate at very high frequencies. Conventional boundary element method analysis of the electric field in a region exterior to such thin conductors can become difficult to carry out accurately and efficiently—especially since MEMS analysis requires computation of charge densities (and then surface traction) separately on the top and bottom surfaces of such beams. A new boundary integral equation has been proposed to handle the computation of charge densities for such high aspect ratio geometries. In the current work, this has been coupled with the finite element method to obtain the response behavior of devices made of such high aspect ratio structural members. This coupling of electrical and mechanical problems is carried out using a Newton scheme based on a Lagrangian description of the electrical and mechanical domains. The numerical results are presented in this paper for the dynamic behavior of the coupled MEMS without damping. The effect of gap between a beam and the ground, on mechanical response of a beam subjected to increasing electric potential, is studied carefully. Damping is considered in the companion paper (Ghosh and Mukherjee, 2009, “Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part II: Damped Vibrations,” ASME J. Appl. Mech. 76, p. 051008).

1.
Frangi
,
A.
, and
di Gioa
,
A.
, 2005, “
Multipole BEM for Evaluating Damping Forces on MEMS
,”
Comput. Mech.
0178-7675,
37
(
1
), pp.
24
31
.
2.
Roman
,
M.
, and
Aubry
,
N.
, 2003, “
Design and Fabrication of Electrostatically Actuated Synthetic Microjets
,” ASME, New York,
AMD-259
, pp.
517
524
.
3.
Ko
,
S. C.
,
Kim
,
Y. C.
,
Lee
,
S. S.
,
Choi
,
S. S.
, and
Kim
,
S. R.
, 2003, “
Micromachined Piezoelectric Membrane Acoustic Device
,”
Sens. Actuators, A
0924-4247,
103
, pp.
130
134
.
4.
Mukherjee
,
S.
, 1982,
Boundary Element Methods in Creep and Fracture
,
Applied Science
,
London
.
5.
Banerjee
,
P. K.
, 1994,
Boundary Element Methods in Engineering
,
McGraw-Hill
,
Europe
.
6.
Chandra
,
A.
, and
Mukherjee
,
S.
, 1997,
Boundary Element Methods in Manufacturing
,
Oxford University Press
,
New York
.
7.
Bonnet
,
A.
, 1999,
Boundary Element Equation Methods for Solids and Fluids
,
Wiley
,
Chichester, UK
.
8.
Mukherjee
,
S.
, and
Mukherjee
,
Y. X.
, 2005,
Boundary Methods: Elements, Contours and Nodes
,
Taylor & Francis
,
London
/
CRC
,
Boca Raton, FL
.
9.
Yang
,
T. Y.
, 1986,
Finite Element Structural Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method
, Vols.
1
and 2, 4th ed.,
McGraw-Hill
,
Berkshire, UK
.
11.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
Mineola, NY
.
12.
Senturia
,
S. D.
,
Harris
,
R. M.
,
Johnson
,
B. P.
,
Kim
,
S.
,
Nabors
,
K.
,
Shulman
,
M. A.
, and
White
,
J. K.
, 1992, “
A Computer Aided Design System for Microelectromechanical Systems (MEMCAD)
,”
J. Microelectromech. Syst.
1057-7157,
1
, pp.
3
13
.
13.
Nabors
,
K.
, and
White
,
J.
, 1991, “
FastCap: A Multi-Pole Accelerated 3-D Capcacitance Extraction Program
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
10
, pp.
1447
1459
.
14.
Gilbert
,
J. R.
,
Legtenberg
,
R.
, and
Senturia
,
S. D.
, 1995, “
3D Coupled Electromechanics for MEMS: Applications of CoSolve-EM
,”
Proceedings of the IEEE MEMS
, pp.
122
127
.
15.
Shi
,
F.
,
Ramesh
,
P.
, and
Mukherjee
,
S.
, 1995, “
Simulation Methods for Micro-Electro-Mechanical Structures (MEMS) With Applications to Microtweezer
,”
Compos. Struct.
,
56
, pp.
769
783
. 0263-8223
16.
Aluru
,
N. R.
, and
White
,
J.
, 1997, “
An Efficient Numerical Technique for Electromechanical Simulation of Complicated Microelectromechancial Structures
,”
Sens. Actuators, A
0924-4247,
58
, pp.
1
11
.
17.
Shi
,
F.
,
Ramesh
,
P.
, and
Mukherjee
,
S.
, 1996, “
Dynamic Analysis of Micro-Electro-Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
4119
4139
. 0029-5981
18.
Harrington
,
R. F.
, 1993,
Field Computation by Moment Methods
,
IEEE
,
Piscataway, NJ
.
19.
Bao
,
Z.
, and
Mukherjee
,
S.
, 2004, “
Electrostatic BEM for MEMS With Thin Conducting Plates and Shells
,”
Eng. Anal. Boundary Elem.
,
28
, pp.
1427
1435
. 0955-7997
20.
Bao
,
Z.
, and
Mukherjee
,
S.
, 2005, “
Electrostatic BEM for MEMS With Thin Beams
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
297
312
.
21.
Chuyan
,
S. -W.
,
Liao
,
Y. -S.
, and
Chen
,
J. -T.
, 2005, “
Computational Study of the Effect of Finger Width and Aspect Ratios for the Electrostatic Levitating Force of MEMS Comb Drive
,”
J. Microelectromech. Syst.
1057-7157,
14
, pp.
305
312
.
22.
Li
,
G.
, and
Aluru
,
N. R.
, 2003, “
Efficient Mixed-Domain Analysis of Electrostatic MEMS
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
22
, pp.
1228
1242
.
23.
Li
,
G.
, and
Aluru
,
N. R.
, 2002, “
A Lagrangian Approach for Electrostatic Analysis of Deformable Conductors
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
245
254
.
24.
Shrivastava
,
V.
,
Aluru
,
N. R.
, and
Mukherjee
,
S.
, 2004, “
Numerical Analysis of 3D Electrostatics of Deformable Conductors Using a Lagrangian Approach
,”
Eng. Anal. Boundary Elem.
,
28
, pp.
583
591
. 0955-7997
25.
De
S. K.
, and
Aluru
N. R.
, 2004, “
Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS
,”
IEEE J. Microelectromech. Syst.
,
13
, pp.
737
758
. 0955-7997
26.
Mukherjee
,
S.
,
Bao
,
Z.
,
Roman
,
M.
, and
Aubry
,
N.
, 2005, “
Nonlinear Mechanics of MEMS Plates With a Total Lagrangian Approach
,”
Compos. Struct.
,
13
, pp.
758
768
. 0263-8223
27.
Telukunta
,
S.
, and
Mukherjee
,
S.
, 2006, “
Fully Lagrangian Modeling of MEMS With Thin Plates
,”
J. Microelectromech. Syst.
1057-7157,
15
(
4
), pp.
795
810
.
28.
Ghosh
,
R.
, and
Mukherjee
,
S.
, 2009, “
Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part II: Damped Vibrations
,”
ASME J. Appl. Mech.
,
76
, p. 051008 0021-8936 .
29.
Mukherjee
,
S.
, 2000, “
Finite Parts of Singular and Hypersingular Integrals With Irregular Boundary Source Points
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
767
776
. 0955-7997
30.
Nanson
,
E. J.
, 1877, “
Note on Hydrodynamics
,”
The Messenger of Mathematics
,
7
, pp.
182
183
.
31.
Reddy
,
J. N.
, 2004,
Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
New York
.
32.
Bao
,
Z.
,
Mukherjee
,
S.
,
Roman
,
M.
, and
Aubry
,
N.
, 2004, “
Nonlinear Vibrations of Beams, Strings, Plates and Membranes Without Initial Tension
,”
ASME J. Appl. Mech.
0021-8936,
71
(
4
), pp.
551
559
.
33.
Newmark
,
N. M.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
85
, pp.
67
94
.
34.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Element for Continua and Structures
,
Wiley
,
Chichester, West Sussex, England
.
35.
Liu
,
Y. J.
, and
Shen
,
L.
, 2007, “
A Dual BIE Approach for Large-Scale Modelling of 3-D Electrostatic Problems With the Fast Multipole Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
71
(
7
), pp.
837
855
. 0029-5981
36.
Petersen
,
K. E.
, 1982, “
Silicon as a Mechanical Material
,”
Proc. IEEE
0018-9219,
70
, pp.
420
455
.
37.
Sharpe
,
W. N.
, Jr.
, 2001, “
Mechanical Properties of MEMS Materials
,”
The MEMS Handbook
,
CRC
,
Boca Raton, FL
.
38.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
(
5
), pp.
672
680
.
39.
Hurty
,
W. C.
, and
Rubinstein
,
M. F.
, 1964,
Dynamics of Structures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Chen
,
H.
, and
Mukherjee
,
S.
, 2006, “
Charge Distribution on Thin Conducting Nanotubes—Reduced 3-D Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
68
(
5
), pp.
503
524
.
41.
Chen
,
H.
,
Mukherjee
,
S.
, and
Aluru
,
N.
, 2008, “
Charge Distribution on Thin Semiconducting Silicon Nanowire
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
3366
3377
. 0045-7825
You do not currently have access to this content.