In this paper, we look for rotating beams whose eigenpair (frequency and mode-shape) is the same as that of uniform nonrotating beams for a particular mode. It is found that, for any given mode, there exist flexural stiffness functions (FSFs) for which the jth mode eigenpair of a rotating beam, with uniform mass distribution, is identical to that of a corresponding nonrotating uniform beam with the same length and mass distribution. By putting the derived FSF in the finite element analysis of a rotating cantilever beam, the frequencies and mode-shapes of a nonrotating cantilever beam are obtained. For the first mode, a physically feasible equivalent rotating beam exists, but for higher modes, the flexural stiffness has internal singularities. Strategies for addressing the singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test-functions for rotating beam codes and for targeted destiffening of rotating beams.

1.
Hodges
,
D. J.
, and
Rutkowsky
,
M. J.
, 1981, “
Free Vibration Analysis of Rotating Beams by a Variable Order Finite Element Method
,”
AIAA J.
0001-1452,
19
(
11
), pp.
1459
1466
.
2.
Wright
,
A. D.
,
Smith
,
C. E.
,
Thresher
,
R. W.
, and
Wang
,
J. L. C.
, 1982, “
Vibration Modes of Centrifugally Stiffened Beams
,”
ASME J. Appl. Mech.
,
49
(
2
), pp.
197
202
. 0021-8936
3.
Yoo
,
H. H.
, and
Shin
,
S. H.
, 1998, “
Vibration Analysis of Rotating Cantilever Beams
,”
J. Sound Vib.
0022-460X,
212
(
5
), pp.
807
828
.
4.
Sinha
,
S. K.
, 2007, “
Combined Torsional-Bending-Axial Dynamics of a Twisted Rotating Cantilever Timoshenko Beam With Contact-Impact Loads at the Free End
,”
ASME J. Appl. Mech.
0021-8936,
74
(
3
), pp.
505
522
.
5.
Avramov
,
K. V.
,
Pierre
,
C.
, and
Shyriaieva
,
N.
, 2007, “
Flexural-Flexural-Torsional Non-Linear Vibrations of Pre-Twisted Rotating Beams With Asymmetric Cross-Sections
,”
J. Vib. Control
1077-5463,
13
(
4
), pp.
329
364
.
6.
Lauzon
,
D. M.
, and
Murthy
,
V. R.
, 1993, “
Determination of Vibration Characteristics of Multiple-Load-Path Blades by a Modified Galerkin Method
,”
Comput. Struct.
,
46
(
6
), pp.
1007
1020
. 0045-7949
7.
Wang
,
G.
, and
Wereley
,
N. M.
, 2004, “
Free Vibration Analysis of Rotating Blades With Uniform Tapers
,”
AIAA J.
,
42
(
12
), pp.
2429
2437
. 0001-1452
8.
Banerjee
,
J. R.
, 2000, “
Free Vibration of Centrifugally Stiffened Uniform and Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
0022-460X,
233
(
5
), pp.
857
875
.
9.
Udupa
,
K. M.
, and
Varadan
,
T. K.
, 1990, “
Hierarchical Finite Element Method for Rotating Beams
,”
J. Sound Vib.
0022-460X,
138
(
3
), pp.
447
456
.
10.
Gunda
,
J. B.
, and
Ganguli
,
R.
, 2008, “
New Rational Interpolation Functions for Finite Element Analysis of Rotating Beams
,”
Int. J. Mech. Sci.
,
50
(
3
), pp.
578
588
. 0020-7403
11.
Gunda
,
J. B.
, and
Ganguli
,
R.
, 2008, “
Stiff String Basis Functions for Vibration Analysis of High Speed Rotating Beams
,”
ASME J. Appl. Mech.
0021-8936,
75
(
2
), p.
024502
.
12.
Gunda
,
J. B.
,
Singh
,
A. P.
,
Chabbra
,
P. P. S.
, and
Ganguli
,
R.
, 2007, “
Free Vibration Analysis of Rotating Tapered Blades Using Fourier-p Superelement
,”
Struct. Eng. Mech.
,
27
(
2
), pp.
243
257
. 1225-4568
13.
Vinod
,
K. G.
,
Gopalakrishnan
,
S.
, and
Ganguli
,
R.
, 2007, “
Free Vibration and Wave Propagation Analysis of Uniform and Tapered Rotating Beams Using Spectrally Formulated Finite Elements
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
5875
5893
. 0020-7683
14.
Naguleswaran
,
S.
, 1994, “
Lateral Vibration of a Centrifugally Tensioned Uniform Euler-Bernouli Beam
,”
J. Sound Vib.
0022-460X,
176
(
5
), pp.
613
624
.
15.
Lee
,
S. Y.
, and
Sheu
,
J. J.
, 2007, “
Free Vibrations of Rotating Inclined Beam
,”
ASME J. Appl. Mech.
0021-8936,
74
(
3
), pp.
406
414
.
16.
Banerjee
,
J. R.
, 2001, “
Dynamic Stiffness Formulation and Free Vibration Analysis of Centrifugally Stiffened Timoshenko Beams
,”
J. Sound Vib.
0022-460X,
247
(
1
), pp.
97
115
.
17.
Banerjee
,
J. R.
, 2003, “
Free Vibration of Sandwich Beams Using the Dynamic Stiffness Method
,”
Comput. Struct.
,
81
(
18–19
), pp.
1915
1922
. 0045-7949
18.
Banerjee
,
J. R.
,
Su
,
H.
, and
Jackson
,
D. R.
, 2006, “
Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1034
1054
. 0022-460X
19.
Hashemi
,
S. M.
, and
Richard
,
M. J.
, 2001, “
Natural Frequencies of Rotating Uniform Beams With Coriolis Effects
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
4
), pp.
444
455
.
20.
Mierovitch
,
L.
, 1986,
Elements of Vibration Analysis
, 2nd ed.,
McGraw-Hill
,
New York
.
21.
Drexel
,
M. V.
, and
Ginsberg
,
J. H.
, 2001, “
Modal Overlap and Dissipation Effects of a Cantilever Beam With Multiple Attached Oscillators
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
2
), pp.
181
187
.
22.
Pawar
,
P. P.
, and
Ganguli
,
R.
, 2003, “
Genetic Fuzzy System for Damage Detection in Beams and Helicopter Rotor Blades
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
16–18
), pp.
2031
2057
.
23.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
24.
Biondi
,
B.
, and
Caddemni
,
S.
, 2005, “
Closed Form Solutions of Euler-Bernouli Beams With Singularities
,”
Int. J. Solids Struct.
0020-7683,
42
(
9–10
), pp.
3027
3044
.
25.
Biondi
,
B.
, and
Caddemni
,
S.
, 2007, “
Euler-Bernouli Beams With Multiple Singularities in the Flexural Stiffness
,”
Eur. J. Mech. A/Solids
,
26
(
5
), pp.
789
809
. 0020-7683
26.
Jin
,
X.
,
Leon
,
M.
, and
Wang
,
Q.
, 2008, “
A Practical Method for Singular Integral Equations of the Second Kind
,”
Eng. Fract. Mech.
,
75
(
5
), pp.
1005
1014
. 0013-7944
27.
Miller
,
R. K.
, 1971, “
On Ignoring the Singularity in Numerical Quadrature
,”
Math. Comput.
,
25
(
115
), pp.
521
532
. 0025-5718
28.
Liu
,
D. S.
, and
Chiou
,
D. Y.
, 2003, “
A Coupled IEM/FEM Approach for Solving Elastic Problems With Multiple Cracks
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1973
1993
. 0020-7683
29.
Schwarz
,
H. R.
, 1989,
Numerical Analysis: A Comprehensive Introduction
,
Wiley
,
New York
.
You do not currently have access to this content.