Compliant contact force modeling has become a popular approach for contact and impact dynamics simulation of multibody systems. In this area, the nonlinear viscoelastic contact force model developed by Hunt and Crossley (1975, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME J. Appl. Mech., 42, pp. 440–445) over 2 decades ago has become a trademark with applications of the model ranging from intermittent dynamics of mechanisms to engagement dynamics of helicopter rotors and implementations in commercial multibody dynamics simulators. The distinguishing feature of this model is that it employs a nonlinear damping term to model the energy dissipation during contact, where the damping coefficient is related to the coefficient of restitution. Since its conception, the model prompted several investigations on how to evaluate the damping coefficient, in turn resulting in several variations on the original Hunt–Crossley model. In this paper, the authors aim to experimentally validate the Hunt–Crossley type of contact force models and furthermore to compare the experimental results to the model predictions obtained with different values of the damping coefficient. This paper reports our findings from the sphere to flat impact experiments, conducted for a range of initial impacting velocities using a pendulum test rig. The unique features of this investigation are that the impact forces are deduced from the acceleration measurements of the impacting body, and the experiments are conducted with specimens of different yield strengths. The experimental forces are compared with those predicted from the contact dynamics simulation of the experimental scenario. The experiments, in addition to generating novel impact measurements, provide a number of insights into both the study of impact and the impact response.

1.
Goldsmith
,
W.
, 1960,
Impact: The Theory and Physical Behavior of Colliding Solids
,
Edward Arnold
,
London, UK
.
2.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
440
445
.
3.
Dubowsky
,
S.
, and
Freudenstein
,
F.
, 1971, “
Dynamics Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamical Model
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
305
309
.
4.
Brach
,
R. M.
, 1989, “
Rigid Body Collisions
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
133
138
.
5.
Stronge
,
W. J.
, 1990, “
Rigid Body Collisions With Friction
,”
Proc. R. Soc. London, Ser. A
0950-1207,
431
, pp.
169
181
.
6.
Han
,
I.
, and
Gilmore
,
B. J.
, 1993, “
Multi-Body Impact Motion With Friction—Analysis, Simulation and Experimental Validation
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
412
422
.
7.
Marhefka
,
D. W.
, and
Orin
,
D. E.
, 1996, “
Simulation of Contact Using a Nonlinear Damping Model
,”
Proceedings of the 1996 IEEE International Conf. on Robotics and Automation
, Minneapolis, MN, pp.
1662
1668
.
8.
Marhefka
,
D. W.
, and
Orin
,
D. E.
, 1999, “
A Compliant Contact Model With Nonlinear Damping for Simulation of Robotic Systems
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
29
, pp.
566
572
.
9.
Fregly
,
B. J.
, 1999, “
A Three-Dimensional Compliant Contact Model for Dynamic Simulation of Total Knee Replacements
,”
Proceedings of the Seventh International Symposium on Computer Simulation in Biomechanics
,
University of Calgary
,
Calgary, AL
, pp.
10
13
.
10.
Howard
,
W. S.
, and
Kumar
,
V.
, 1993, “
A Minimum Principle for the Dynamics Analysis of Systems With Frictional Contacts
,”
Proceedings of the 1993 IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
437
442
.
11.
Mirza
,
K.
,
Hanes
,
M. D.
, and
Orin
,
D. E.
, 1993, “
Dynamic Simulation of Enveloping Power Grasps
,”
Proceedings of the 1993 IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
430
435
.
12.
Crook
,
A. W.
, 1952, “
A Study of Some Impacts Between Metal Bodies by a Piezo-Electric Method
,”
Proc. R. Soc. London, Ser. A
0950-1207,
212
, pp.
377
390
.
13.
Schiehlen
,
W.
, and
Seifried
,
R.
, 2004, “
Three Approaches for Elastodynamic Contact in Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
12
, pp.
1
16
.
14.
Herbert
,
R. G.
, and
McWhannell
,
D. C.
, 1977, “
Shape and Frequency Composition of Pulses From an Impact Pair
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
513
518
.
15.
Lee
,
T. W.
, and
Wang
,
A. C.
, 1983, “
On the Dynamics of Intermittent-Motion Mechanisms—Part 1: Dynamic Model and Response
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
534
540
.
16.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
, 1990, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multi-Body Systems
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
369
376
.
17.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedboeuf
,
J.
, 2002, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Forum 2002
,
SCGM Queen's University
,
Kingston, ON
.
18.
Zhang
,
Y.
, and
Sharf
,
I.
, 2004, “
Compliant Force Modeling for Impact Analysis
,”
Proceedings of the 2004 ASME International Design Technical Conference
, Salt Lake City, UT, Paper No. DETC2004–57220.
19.
Bottasso
,
C. L.
, and
Bauchau
,
O. A.
, 2001, “
Multibody Modeling of Engage and Disengage of the Helicopter Rotors
,”
J. Am. Helicopter Soc.
0002-8711,
46
, pp.
290
300
.
20.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2002, “
The Dynamic Behavior of a Rolling Element Auxiliary Bearing Following Rotor Impact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
406
413
.
21.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
22.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
, 1993, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
0032-5910,
77
, pp.
79
87
.
23.
Mishra
,
B. K.
, 1995, “
Ball Charge Dynamics in a Planetary Mill
,”
Kona
0288-4534,
13
, pp.
151
158
.
24.
Stronge
,
W. J.
, 2000,
Impact Mechanics
,
Cambridge University Press
,
Cambridge
.
25.
Shivaswamy
,
S.
, and
Lankarani
,
H. M.
, 1997, “
Impact Analysis of Plates Using Quasi-Static Approach
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
376
381
.
26.
Cross
,
R.
, 1999, “
The Bounce of a Ball
,”
Am. J. Phys.
0002-9505,
67
, pp.
222
227
.
27.
Ahmed
,
S.
,
Lankarani
,
H. M.
, and
Pereira
,
M.
, 1999, “
Frictional Impact Analysis in Open-Loop Multibody Mechanical Systems
,”
J. Mech. Des.
1050-0472,
121
, pp.
119
127
.
28.
Carre
,
M. J.
,
James
,
D. M.
, and
Haake
,
S. J.
, 2004, “
Impact of a Non-Homogeneous Sphere on a Rigid Surface
,”
J. Mech. Eng. Sci.
0022-2542,
218
, pp.
273
281
.
29.
Falcon
,
E.
,
Laroche
,
C.
,
Fauve
,
S.
, and
Coste
,
C.
, 1998, “
Behavior of One Inelastic Ball Bouncing Repeatedly Off the Ground
,”
Eur. Phys. J. B
1434-6028,
3
, pp.
45
57
.
30.
Osakue
,
E. E.
, and
Rogers
,
R. J.
, 2001, “
An Experimental Study of Friction During Planar Elastic Impact
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
493
500
.
31.
Doyle
,
J. F.
, 1987, “
Determining the Contact Force During the Transverse Impact of Plates
,”
Exp. Mech.
0014-4851,
27
, pp.
68
72
.
32.
Lewis
,
A. D.
, and
Rogers
,
R. J.
, 1988, “
Experimental and Numerical Study of Forces During Oblique Impact
,”
J. Sound Vib.
0022-460X,
125
, pp.
403
412
.
33.
Zhang
,
Y.
, 2007, “
Contact Dynamics for Rigid Bodies: Modeling and Experiments
,” Ph.D. thesis, McGill University, Montreal, QC.
34.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
You do not currently have access to this content.